This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in an intersection of function values. (Contributed by Scott Fenton, 9-Dec-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | elintfv.1 | ⊢ 𝑋 ∈ V | |
| Assertion | elintfv | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴 ) → ( 𝑋 ∈ ∩ ( 𝐹 “ 𝐵 ) ↔ ∀ 𝑦 ∈ 𝐵 𝑋 ∈ ( 𝐹 ‘ 𝑦 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elintfv.1 | ⊢ 𝑋 ∈ V | |
| 2 | 1 | elint | ⊢ ( 𝑋 ∈ ∩ ( 𝐹 “ 𝐵 ) ↔ ∀ 𝑧 ( 𝑧 ∈ ( 𝐹 “ 𝐵 ) → 𝑋 ∈ 𝑧 ) ) |
| 3 | fvelimab | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴 ) → ( 𝑧 ∈ ( 𝐹 “ 𝐵 ) ↔ ∃ 𝑦 ∈ 𝐵 ( 𝐹 ‘ 𝑦 ) = 𝑧 ) ) | |
| 4 | 3 | imbi1d | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴 ) → ( ( 𝑧 ∈ ( 𝐹 “ 𝐵 ) → 𝑋 ∈ 𝑧 ) ↔ ( ∃ 𝑦 ∈ 𝐵 ( 𝐹 ‘ 𝑦 ) = 𝑧 → 𝑋 ∈ 𝑧 ) ) ) |
| 5 | r19.23v | ⊢ ( ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑦 ) = 𝑧 → 𝑋 ∈ 𝑧 ) ↔ ( ∃ 𝑦 ∈ 𝐵 ( 𝐹 ‘ 𝑦 ) = 𝑧 → 𝑋 ∈ 𝑧 ) ) | |
| 6 | 4 5 | bitr4di | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴 ) → ( ( 𝑧 ∈ ( 𝐹 “ 𝐵 ) → 𝑋 ∈ 𝑧 ) ↔ ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑦 ) = 𝑧 → 𝑋 ∈ 𝑧 ) ) ) |
| 7 | 6 | albidv | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴 ) → ( ∀ 𝑧 ( 𝑧 ∈ ( 𝐹 “ 𝐵 ) → 𝑋 ∈ 𝑧 ) ↔ ∀ 𝑧 ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑦 ) = 𝑧 → 𝑋 ∈ 𝑧 ) ) ) |
| 8 | ralcom4 | ⊢ ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ( ( 𝐹 ‘ 𝑦 ) = 𝑧 → 𝑋 ∈ 𝑧 ) ↔ ∀ 𝑧 ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑦 ) = 𝑧 → 𝑋 ∈ 𝑧 ) ) | |
| 9 | eqcom | ⊢ ( ( 𝐹 ‘ 𝑦 ) = 𝑧 ↔ 𝑧 = ( 𝐹 ‘ 𝑦 ) ) | |
| 10 | 9 | imbi1i | ⊢ ( ( ( 𝐹 ‘ 𝑦 ) = 𝑧 → 𝑋 ∈ 𝑧 ) ↔ ( 𝑧 = ( 𝐹 ‘ 𝑦 ) → 𝑋 ∈ 𝑧 ) ) |
| 11 | 10 | albii | ⊢ ( ∀ 𝑧 ( ( 𝐹 ‘ 𝑦 ) = 𝑧 → 𝑋 ∈ 𝑧 ) ↔ ∀ 𝑧 ( 𝑧 = ( 𝐹 ‘ 𝑦 ) → 𝑋 ∈ 𝑧 ) ) |
| 12 | fvex | ⊢ ( 𝐹 ‘ 𝑦 ) ∈ V | |
| 13 | eleq2 | ⊢ ( 𝑧 = ( 𝐹 ‘ 𝑦 ) → ( 𝑋 ∈ 𝑧 ↔ 𝑋 ∈ ( 𝐹 ‘ 𝑦 ) ) ) | |
| 14 | 12 13 | ceqsalv | ⊢ ( ∀ 𝑧 ( 𝑧 = ( 𝐹 ‘ 𝑦 ) → 𝑋 ∈ 𝑧 ) ↔ 𝑋 ∈ ( 𝐹 ‘ 𝑦 ) ) |
| 15 | 11 14 | bitri | ⊢ ( ∀ 𝑧 ( ( 𝐹 ‘ 𝑦 ) = 𝑧 → 𝑋 ∈ 𝑧 ) ↔ 𝑋 ∈ ( 𝐹 ‘ 𝑦 ) ) |
| 16 | 15 | ralbii | ⊢ ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ( ( 𝐹 ‘ 𝑦 ) = 𝑧 → 𝑋 ∈ 𝑧 ) ↔ ∀ 𝑦 ∈ 𝐵 𝑋 ∈ ( 𝐹 ‘ 𝑦 ) ) |
| 17 | 8 16 | bitr3i | ⊢ ( ∀ 𝑧 ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑦 ) = 𝑧 → 𝑋 ∈ 𝑧 ) ↔ ∀ 𝑦 ∈ 𝐵 𝑋 ∈ ( 𝐹 ‘ 𝑦 ) ) |
| 18 | 7 17 | bitrdi | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴 ) → ( ∀ 𝑧 ( 𝑧 ∈ ( 𝐹 “ 𝐵 ) → 𝑋 ∈ 𝑧 ) ↔ ∀ 𝑦 ∈ 𝐵 𝑋 ∈ ( 𝐹 ‘ 𝑦 ) ) ) |
| 19 | 2 18 | bitrid | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴 ) → ( 𝑋 ∈ ∩ ( 𝐹 “ 𝐵 ) ↔ ∀ 𝑦 ∈ 𝐵 𝑋 ∈ ( 𝐹 ‘ 𝑦 ) ) ) |