This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Divide the unit interval into two pieces. (Contributed by Mario Carneiro, 7-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elii2 | ⊢ ( ( 𝑋 ∈ ( 0 [,] 1 ) ∧ ¬ 𝑋 ≤ ( 1 / 2 ) ) → 𝑋 ∈ ( ( 1 / 2 ) [,] 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elicc01 | ⊢ ( 𝑋 ∈ ( 0 [,] 1 ) ↔ ( 𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ∧ 𝑋 ≤ 1 ) ) | |
| 2 | 1 | simp1bi | ⊢ ( 𝑋 ∈ ( 0 [,] 1 ) → 𝑋 ∈ ℝ ) |
| 3 | 2 | adantr | ⊢ ( ( 𝑋 ∈ ( 0 [,] 1 ) ∧ ¬ 𝑋 ≤ ( 1 / 2 ) ) → 𝑋 ∈ ℝ ) |
| 4 | halfre | ⊢ ( 1 / 2 ) ∈ ℝ | |
| 5 | letric | ⊢ ( ( 𝑋 ∈ ℝ ∧ ( 1 / 2 ) ∈ ℝ ) → ( 𝑋 ≤ ( 1 / 2 ) ∨ ( 1 / 2 ) ≤ 𝑋 ) ) | |
| 6 | 2 4 5 | sylancl | ⊢ ( 𝑋 ∈ ( 0 [,] 1 ) → ( 𝑋 ≤ ( 1 / 2 ) ∨ ( 1 / 2 ) ≤ 𝑋 ) ) |
| 7 | 6 | orcanai | ⊢ ( ( 𝑋 ∈ ( 0 [,] 1 ) ∧ ¬ 𝑋 ≤ ( 1 / 2 ) ) → ( 1 / 2 ) ≤ 𝑋 ) |
| 8 | 1 | simp3bi | ⊢ ( 𝑋 ∈ ( 0 [,] 1 ) → 𝑋 ≤ 1 ) |
| 9 | 8 | adantr | ⊢ ( ( 𝑋 ∈ ( 0 [,] 1 ) ∧ ¬ 𝑋 ≤ ( 1 / 2 ) ) → 𝑋 ≤ 1 ) |
| 10 | 1re | ⊢ 1 ∈ ℝ | |
| 11 | 4 10 | elicc2i | ⊢ ( 𝑋 ∈ ( ( 1 / 2 ) [,] 1 ) ↔ ( 𝑋 ∈ ℝ ∧ ( 1 / 2 ) ≤ 𝑋 ∧ 𝑋 ≤ 1 ) ) |
| 12 | 3 7 9 11 | syl3anbrc | ⊢ ( ( 𝑋 ∈ ( 0 [,] 1 ) ∧ ¬ 𝑋 ≤ ( 1 / 2 ) ) → 𝑋 ∈ ( ( 1 / 2 ) [,] 1 ) ) |