This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Divide the unit interval into two pieces. (Contributed by Mario Carneiro, 7-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elii1 | |- ( X e. ( 0 [,] ( 1 / 2 ) ) <-> ( X e. ( 0 [,] 1 ) /\ X <_ ( 1 / 2 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re | |- 0 e. RR |
|
| 2 | halfre | |- ( 1 / 2 ) e. RR |
|
| 3 | 1 2 | elicc2i | |- ( X e. ( 0 [,] ( 1 / 2 ) ) <-> ( X e. RR /\ 0 <_ X /\ X <_ ( 1 / 2 ) ) ) |
| 4 | 3 | simp1bi | |- ( X e. ( 0 [,] ( 1 / 2 ) ) -> X e. RR ) |
| 5 | 2 | a1i | |- ( X e. ( 0 [,] ( 1 / 2 ) ) -> ( 1 / 2 ) e. RR ) |
| 6 | 1re | |- 1 e. RR |
|
| 7 | 6 | a1i | |- ( X e. ( 0 [,] ( 1 / 2 ) ) -> 1 e. RR ) |
| 8 | 3 | simp3bi | |- ( X e. ( 0 [,] ( 1 / 2 ) ) -> X <_ ( 1 / 2 ) ) |
| 9 | halflt1 | |- ( 1 / 2 ) < 1 |
|
| 10 | 2 6 9 | ltleii | |- ( 1 / 2 ) <_ 1 |
| 11 | 10 | a1i | |- ( X e. ( 0 [,] ( 1 / 2 ) ) -> ( 1 / 2 ) <_ 1 ) |
| 12 | 4 5 7 8 11 | letrd | |- ( X e. ( 0 [,] ( 1 / 2 ) ) -> X <_ 1 ) |
| 13 | 12 | pm4.71ri | |- ( X e. ( 0 [,] ( 1 / 2 ) ) <-> ( X <_ 1 /\ X e. ( 0 [,] ( 1 / 2 ) ) ) ) |
| 14 | ancom | |- ( ( X <_ 1 /\ X e. ( 0 [,] ( 1 / 2 ) ) ) <-> ( X e. ( 0 [,] ( 1 / 2 ) ) /\ X <_ 1 ) ) |
|
| 15 | an32 | |- ( ( ( ( X e. RR /\ 0 <_ X ) /\ X <_ ( 1 / 2 ) ) /\ X <_ 1 ) <-> ( ( ( X e. RR /\ 0 <_ X ) /\ X <_ 1 ) /\ X <_ ( 1 / 2 ) ) ) |
|
| 16 | df-3an | |- ( ( X e. RR /\ 0 <_ X /\ X <_ ( 1 / 2 ) ) <-> ( ( X e. RR /\ 0 <_ X ) /\ X <_ ( 1 / 2 ) ) ) |
|
| 17 | 3 16 | bitri | |- ( X e. ( 0 [,] ( 1 / 2 ) ) <-> ( ( X e. RR /\ 0 <_ X ) /\ X <_ ( 1 / 2 ) ) ) |
| 18 | 17 | anbi1i | |- ( ( X e. ( 0 [,] ( 1 / 2 ) ) /\ X <_ 1 ) <-> ( ( ( X e. RR /\ 0 <_ X ) /\ X <_ ( 1 / 2 ) ) /\ X <_ 1 ) ) |
| 19 | 1 6 | elicc2i | |- ( X e. ( 0 [,] 1 ) <-> ( X e. RR /\ 0 <_ X /\ X <_ 1 ) ) |
| 20 | df-3an | |- ( ( X e. RR /\ 0 <_ X /\ X <_ 1 ) <-> ( ( X e. RR /\ 0 <_ X ) /\ X <_ 1 ) ) |
|
| 21 | 19 20 | bitri | |- ( X e. ( 0 [,] 1 ) <-> ( ( X e. RR /\ 0 <_ X ) /\ X <_ 1 ) ) |
| 22 | 21 | anbi1i | |- ( ( X e. ( 0 [,] 1 ) /\ X <_ ( 1 / 2 ) ) <-> ( ( ( X e. RR /\ 0 <_ X ) /\ X <_ 1 ) /\ X <_ ( 1 / 2 ) ) ) |
| 23 | 15 18 22 | 3bitr4i | |- ( ( X e. ( 0 [,] ( 1 / 2 ) ) /\ X <_ 1 ) <-> ( X e. ( 0 [,] 1 ) /\ X <_ ( 1 / 2 ) ) ) |
| 24 | 14 23 | bitri | |- ( ( X <_ 1 /\ X e. ( 0 [,] ( 1 / 2 ) ) ) <-> ( X e. ( 0 [,] 1 ) /\ X <_ ( 1 / 2 ) ) ) |
| 25 | 13 24 | bitri | |- ( X e. ( 0 [,] ( 1 / 2 ) ) <-> ( X e. ( 0 [,] 1 ) /\ X <_ ( 1 / 2 ) ) ) |