This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A member of a finite set of sequential nonnegative integers is a member of a finite set of sequential nonnegative integers with a member of a finite set of sequential nonnegative integers starting at the upper bound of the first interval. (Contributed by Alexander van der Vekens, 27-May-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elfz0fzfz0 | ⊢ ( ( 𝑀 ∈ ( 0 ... 𝐿 ) ∧ 𝑁 ∈ ( 𝐿 ... 𝑋 ) ) → 𝑀 ∈ ( 0 ... 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfz2nn0 | ⊢ ( 𝑀 ∈ ( 0 ... 𝐿 ) ↔ ( 𝑀 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ∧ 𝑀 ≤ 𝐿 ) ) | |
| 2 | elfz2 | ⊢ ( 𝑁 ∈ ( 𝐿 ... 𝑋 ) ↔ ( ( 𝐿 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝐿 ≤ 𝑁 ∧ 𝑁 ≤ 𝑋 ) ) ) | |
| 3 | nn0re | ⊢ ( 𝑀 ∈ ℕ0 → 𝑀 ∈ ℝ ) | |
| 4 | nn0re | ⊢ ( 𝐿 ∈ ℕ0 → 𝐿 ∈ ℝ ) | |
| 5 | zre | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℝ ) | |
| 6 | 3 4 5 | 3anim123i | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∈ ℝ ∧ 𝐿 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ) |
| 7 | 6 | 3expa | ⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ) ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∈ ℝ ∧ 𝐿 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ) |
| 8 | letr | ⊢ ( ( 𝑀 ∈ ℝ ∧ 𝐿 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( ( 𝑀 ≤ 𝐿 ∧ 𝐿 ≤ 𝑁 ) → 𝑀 ≤ 𝑁 ) ) | |
| 9 | 7 8 | syl | ⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ) ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀 ≤ 𝐿 ∧ 𝐿 ≤ 𝑁 ) → 𝑀 ≤ 𝑁 ) ) |
| 10 | simplll | ⊢ ( ( ( ( 𝑀 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ) ∧ 𝑁 ∈ ℤ ) ∧ 𝑀 ≤ 𝑁 ) → 𝑀 ∈ ℕ0 ) | |
| 11 | simpr | ⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ) ∧ 𝑁 ∈ ℤ ) → 𝑁 ∈ ℤ ) | |
| 12 | 11 | adantr | ⊢ ( ( ( ( 𝑀 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ) ∧ 𝑁 ∈ ℤ ) ∧ 𝑀 ≤ 𝑁 ) → 𝑁 ∈ ℤ ) |
| 13 | elnn0z | ⊢ ( 𝑀 ∈ ℕ0 ↔ ( 𝑀 ∈ ℤ ∧ 0 ≤ 𝑀 ) ) | |
| 14 | 0red | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → 0 ∈ ℝ ) | |
| 15 | zre | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℝ ) | |
| 16 | 15 | adantr | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → 𝑀 ∈ ℝ ) |
| 17 | 5 | adantl | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → 𝑁 ∈ ℝ ) |
| 18 | letr | ⊢ ( ( 0 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( ( 0 ≤ 𝑀 ∧ 𝑀 ≤ 𝑁 ) → 0 ≤ 𝑁 ) ) | |
| 19 | 14 16 17 18 | syl3anc | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 0 ≤ 𝑀 ∧ 𝑀 ≤ 𝑁 ) → 0 ≤ 𝑁 ) ) |
| 20 | 19 | exp4b | ⊢ ( 𝑀 ∈ ℤ → ( 𝑁 ∈ ℤ → ( 0 ≤ 𝑀 → ( 𝑀 ≤ 𝑁 → 0 ≤ 𝑁 ) ) ) ) |
| 21 | 20 | com23 | ⊢ ( 𝑀 ∈ ℤ → ( 0 ≤ 𝑀 → ( 𝑁 ∈ ℤ → ( 𝑀 ≤ 𝑁 → 0 ≤ 𝑁 ) ) ) ) |
| 22 | 21 | imp | ⊢ ( ( 𝑀 ∈ ℤ ∧ 0 ≤ 𝑀 ) → ( 𝑁 ∈ ℤ → ( 𝑀 ≤ 𝑁 → 0 ≤ 𝑁 ) ) ) |
| 23 | 13 22 | sylbi | ⊢ ( 𝑀 ∈ ℕ0 → ( 𝑁 ∈ ℤ → ( 𝑀 ≤ 𝑁 → 0 ≤ 𝑁 ) ) ) |
| 24 | 23 | adantr | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ) → ( 𝑁 ∈ ℤ → ( 𝑀 ≤ 𝑁 → 0 ≤ 𝑁 ) ) ) |
| 25 | 24 | imp | ⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ) ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ≤ 𝑁 → 0 ≤ 𝑁 ) ) |
| 26 | 25 | imp | ⊢ ( ( ( ( 𝑀 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ) ∧ 𝑁 ∈ ℤ ) ∧ 𝑀 ≤ 𝑁 ) → 0 ≤ 𝑁 ) |
| 27 | elnn0z | ⊢ ( 𝑁 ∈ ℕ0 ↔ ( 𝑁 ∈ ℤ ∧ 0 ≤ 𝑁 ) ) | |
| 28 | 12 26 27 | sylanbrc | ⊢ ( ( ( ( 𝑀 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ) ∧ 𝑁 ∈ ℤ ) ∧ 𝑀 ≤ 𝑁 ) → 𝑁 ∈ ℕ0 ) |
| 29 | simpr | ⊢ ( ( ( ( 𝑀 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ) ∧ 𝑁 ∈ ℤ ) ∧ 𝑀 ≤ 𝑁 ) → 𝑀 ≤ 𝑁 ) | |
| 30 | 10 28 29 | 3jca | ⊢ ( ( ( ( 𝑀 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ) ∧ 𝑁 ∈ ℤ ) ∧ 𝑀 ≤ 𝑁 ) → ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ≤ 𝑁 ) ) |
| 31 | 30 | ex | ⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ) ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ≤ 𝑁 → ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ≤ 𝑁 ) ) ) |
| 32 | 9 31 | syld | ⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ) ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀 ≤ 𝐿 ∧ 𝐿 ≤ 𝑁 ) → ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ≤ 𝑁 ) ) ) |
| 33 | 32 | exp4b | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ) → ( 𝑁 ∈ ℤ → ( 𝑀 ≤ 𝐿 → ( 𝐿 ≤ 𝑁 → ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ≤ 𝑁 ) ) ) ) ) |
| 34 | 33 | com23 | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ) → ( 𝑀 ≤ 𝐿 → ( 𝑁 ∈ ℤ → ( 𝐿 ≤ 𝑁 → ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ≤ 𝑁 ) ) ) ) ) |
| 35 | 34 | 3impia | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ∧ 𝑀 ≤ 𝐿 ) → ( 𝑁 ∈ ℤ → ( 𝐿 ≤ 𝑁 → ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ≤ 𝑁 ) ) ) ) |
| 36 | 35 | com13 | ⊢ ( 𝐿 ≤ 𝑁 → ( 𝑁 ∈ ℤ → ( ( 𝑀 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ∧ 𝑀 ≤ 𝐿 ) → ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ≤ 𝑁 ) ) ) ) |
| 37 | 36 | adantr | ⊢ ( ( 𝐿 ≤ 𝑁 ∧ 𝑁 ≤ 𝑋 ) → ( 𝑁 ∈ ℤ → ( ( 𝑀 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ∧ 𝑀 ≤ 𝐿 ) → ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ≤ 𝑁 ) ) ) ) |
| 38 | 37 | com12 | ⊢ ( 𝑁 ∈ ℤ → ( ( 𝐿 ≤ 𝑁 ∧ 𝑁 ≤ 𝑋 ) → ( ( 𝑀 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ∧ 𝑀 ≤ 𝐿 ) → ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ≤ 𝑁 ) ) ) ) |
| 39 | 38 | 3ad2ant3 | ⊢ ( ( 𝐿 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝐿 ≤ 𝑁 ∧ 𝑁 ≤ 𝑋 ) → ( ( 𝑀 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ∧ 𝑀 ≤ 𝐿 ) → ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ≤ 𝑁 ) ) ) ) |
| 40 | 39 | imp | ⊢ ( ( ( 𝐿 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝐿 ≤ 𝑁 ∧ 𝑁 ≤ 𝑋 ) ) → ( ( 𝑀 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ∧ 𝑀 ≤ 𝐿 ) → ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ≤ 𝑁 ) ) ) |
| 41 | 2 40 | sylbi | ⊢ ( 𝑁 ∈ ( 𝐿 ... 𝑋 ) → ( ( 𝑀 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ∧ 𝑀 ≤ 𝐿 ) → ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ≤ 𝑁 ) ) ) |
| 42 | 41 | com12 | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ∧ 𝑀 ≤ 𝐿 ) → ( 𝑁 ∈ ( 𝐿 ... 𝑋 ) → ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ≤ 𝑁 ) ) ) |
| 43 | 1 42 | sylbi | ⊢ ( 𝑀 ∈ ( 0 ... 𝐿 ) → ( 𝑁 ∈ ( 𝐿 ... 𝑋 ) → ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ≤ 𝑁 ) ) ) |
| 44 | 43 | imp | ⊢ ( ( 𝑀 ∈ ( 0 ... 𝐿 ) ∧ 𝑁 ∈ ( 𝐿 ... 𝑋 ) ) → ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ≤ 𝑁 ) ) |
| 45 | elfz2nn0 | ⊢ ( 𝑀 ∈ ( 0 ... 𝑁 ) ↔ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ≤ 𝑁 ) ) | |
| 46 | 44 45 | sylibr | ⊢ ( ( 𝑀 ∈ ( 0 ... 𝐿 ) ∧ 𝑁 ∈ ( 𝐿 ... 𝑋 ) ) → 𝑀 ∈ ( 0 ... 𝑁 ) ) |