This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is a limit point of a filter." (Contributed by Mario Carneiro, 9-Apr-2015) (Revised by Stefan O'Rear, 6-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | flimval.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | elflim2 | ⊢ ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ↔ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil ∧ 𝐹 ⊆ 𝒫 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ⊆ 𝐹 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | flimval.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | anass | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil ) ∧ 𝐹 ⊆ 𝒫 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ⊆ 𝐹 ) ) ↔ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil ) ∧ ( 𝐹 ⊆ 𝒫 𝑋 ∧ ( 𝐴 ∈ 𝑋 ∧ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ⊆ 𝐹 ) ) ) ) | |
| 3 | df-3an | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil ∧ 𝐹 ⊆ 𝒫 𝑋 ) ↔ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil ) ∧ 𝐹 ⊆ 𝒫 𝑋 ) ) | |
| 4 | 3 | anbi1i | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil ∧ 𝐹 ⊆ 𝒫 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ⊆ 𝐹 ) ) ↔ ( ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil ) ∧ 𝐹 ⊆ 𝒫 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ⊆ 𝐹 ) ) ) |
| 5 | df-flim | ⊢ fLim = ( 𝑗 ∈ Top , 𝑓 ∈ ∪ ran Fil ↦ { 𝑥 ∈ ∪ 𝑗 ∣ ( ( ( nei ‘ 𝑗 ) ‘ { 𝑥 } ) ⊆ 𝑓 ∧ 𝑓 ⊆ 𝒫 ∪ 𝑗 ) } ) | |
| 6 | 5 | elmpocl | ⊢ ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) → ( 𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil ) ) |
| 7 | 1 | flimval | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil ) → ( 𝐽 fLim 𝐹 ) = { 𝑥 ∈ 𝑋 ∣ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ⊆ 𝐹 ∧ 𝐹 ⊆ 𝒫 𝑋 ) } ) |
| 8 | 7 | eleq2d | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil ) → ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ↔ 𝐴 ∈ { 𝑥 ∈ 𝑋 ∣ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ⊆ 𝐹 ∧ 𝐹 ⊆ 𝒫 𝑋 ) } ) ) |
| 9 | sneq | ⊢ ( 𝑥 = 𝐴 → { 𝑥 } = { 𝐴 } ) | |
| 10 | 9 | fveq2d | ⊢ ( 𝑥 = 𝐴 → ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) = ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) |
| 11 | 10 | sseq1d | ⊢ ( 𝑥 = 𝐴 → ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ⊆ 𝐹 ↔ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ⊆ 𝐹 ) ) |
| 12 | 11 | anbi1d | ⊢ ( 𝑥 = 𝐴 → ( ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ⊆ 𝐹 ∧ 𝐹 ⊆ 𝒫 𝑋 ) ↔ ( ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ⊆ 𝐹 ∧ 𝐹 ⊆ 𝒫 𝑋 ) ) ) |
| 13 | 12 | biancomd | ⊢ ( 𝑥 = 𝐴 → ( ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ⊆ 𝐹 ∧ 𝐹 ⊆ 𝒫 𝑋 ) ↔ ( 𝐹 ⊆ 𝒫 𝑋 ∧ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ⊆ 𝐹 ) ) ) |
| 14 | 13 | elrab | ⊢ ( 𝐴 ∈ { 𝑥 ∈ 𝑋 ∣ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ⊆ 𝐹 ∧ 𝐹 ⊆ 𝒫 𝑋 ) } ↔ ( 𝐴 ∈ 𝑋 ∧ ( 𝐹 ⊆ 𝒫 𝑋 ∧ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ⊆ 𝐹 ) ) ) |
| 15 | an12 | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ ( 𝐹 ⊆ 𝒫 𝑋 ∧ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ⊆ 𝐹 ) ) ↔ ( 𝐹 ⊆ 𝒫 𝑋 ∧ ( 𝐴 ∈ 𝑋 ∧ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ⊆ 𝐹 ) ) ) | |
| 16 | 14 15 | bitri | ⊢ ( 𝐴 ∈ { 𝑥 ∈ 𝑋 ∣ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ⊆ 𝐹 ∧ 𝐹 ⊆ 𝒫 𝑋 ) } ↔ ( 𝐹 ⊆ 𝒫 𝑋 ∧ ( 𝐴 ∈ 𝑋 ∧ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ⊆ 𝐹 ) ) ) |
| 17 | 8 16 | bitrdi | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil ) → ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ↔ ( 𝐹 ⊆ 𝒫 𝑋 ∧ ( 𝐴 ∈ 𝑋 ∧ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ⊆ 𝐹 ) ) ) ) |
| 18 | 6 17 | biadanii | ⊢ ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ↔ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil ) ∧ ( 𝐹 ⊆ 𝒫 𝑋 ∧ ( 𝐴 ∈ 𝑋 ∧ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ⊆ 𝐹 ) ) ) ) |
| 19 | 2 4 18 | 3bitr4ri | ⊢ ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ↔ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil ∧ 𝐹 ⊆ 𝒫 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ⊆ 𝐹 ) ) ) |