This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is a limit point of a filter." (Contributed by Mario Carneiro, 9-Apr-2015) (Revised by Stefan O'Rear, 6-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | flimval.1 | |- X = U. J |
|
| Assertion | elflim2 | |- ( A e. ( J fLim F ) <-> ( ( J e. Top /\ F e. U. ran Fil /\ F C_ ~P X ) /\ ( A e. X /\ ( ( nei ` J ) ` { A } ) C_ F ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | flimval.1 | |- X = U. J |
|
| 2 | anass | |- ( ( ( ( J e. Top /\ F e. U. ran Fil ) /\ F C_ ~P X ) /\ ( A e. X /\ ( ( nei ` J ) ` { A } ) C_ F ) ) <-> ( ( J e. Top /\ F e. U. ran Fil ) /\ ( F C_ ~P X /\ ( A e. X /\ ( ( nei ` J ) ` { A } ) C_ F ) ) ) ) |
|
| 3 | df-3an | |- ( ( J e. Top /\ F e. U. ran Fil /\ F C_ ~P X ) <-> ( ( J e. Top /\ F e. U. ran Fil ) /\ F C_ ~P X ) ) |
|
| 4 | 3 | anbi1i | |- ( ( ( J e. Top /\ F e. U. ran Fil /\ F C_ ~P X ) /\ ( A e. X /\ ( ( nei ` J ) ` { A } ) C_ F ) ) <-> ( ( ( J e. Top /\ F e. U. ran Fil ) /\ F C_ ~P X ) /\ ( A e. X /\ ( ( nei ` J ) ` { A } ) C_ F ) ) ) |
| 5 | df-flim | |- fLim = ( j e. Top , f e. U. ran Fil |-> { x e. U. j | ( ( ( nei ` j ) ` { x } ) C_ f /\ f C_ ~P U. j ) } ) |
|
| 6 | 5 | elmpocl | |- ( A e. ( J fLim F ) -> ( J e. Top /\ F e. U. ran Fil ) ) |
| 7 | 1 | flimval | |- ( ( J e. Top /\ F e. U. ran Fil ) -> ( J fLim F ) = { x e. X | ( ( ( nei ` J ) ` { x } ) C_ F /\ F C_ ~P X ) } ) |
| 8 | 7 | eleq2d | |- ( ( J e. Top /\ F e. U. ran Fil ) -> ( A e. ( J fLim F ) <-> A e. { x e. X | ( ( ( nei ` J ) ` { x } ) C_ F /\ F C_ ~P X ) } ) ) |
| 9 | sneq | |- ( x = A -> { x } = { A } ) |
|
| 10 | 9 | fveq2d | |- ( x = A -> ( ( nei ` J ) ` { x } ) = ( ( nei ` J ) ` { A } ) ) |
| 11 | 10 | sseq1d | |- ( x = A -> ( ( ( nei ` J ) ` { x } ) C_ F <-> ( ( nei ` J ) ` { A } ) C_ F ) ) |
| 12 | 11 | anbi1d | |- ( x = A -> ( ( ( ( nei ` J ) ` { x } ) C_ F /\ F C_ ~P X ) <-> ( ( ( nei ` J ) ` { A } ) C_ F /\ F C_ ~P X ) ) ) |
| 13 | 12 | biancomd | |- ( x = A -> ( ( ( ( nei ` J ) ` { x } ) C_ F /\ F C_ ~P X ) <-> ( F C_ ~P X /\ ( ( nei ` J ) ` { A } ) C_ F ) ) ) |
| 14 | 13 | elrab | |- ( A e. { x e. X | ( ( ( nei ` J ) ` { x } ) C_ F /\ F C_ ~P X ) } <-> ( A e. X /\ ( F C_ ~P X /\ ( ( nei ` J ) ` { A } ) C_ F ) ) ) |
| 15 | an12 | |- ( ( A e. X /\ ( F C_ ~P X /\ ( ( nei ` J ) ` { A } ) C_ F ) ) <-> ( F C_ ~P X /\ ( A e. X /\ ( ( nei ` J ) ` { A } ) C_ F ) ) ) |
|
| 16 | 14 15 | bitri | |- ( A e. { x e. X | ( ( ( nei ` J ) ` { x } ) C_ F /\ F C_ ~P X ) } <-> ( F C_ ~P X /\ ( A e. X /\ ( ( nei ` J ) ` { A } ) C_ F ) ) ) |
| 17 | 8 16 | bitrdi | |- ( ( J e. Top /\ F e. U. ran Fil ) -> ( A e. ( J fLim F ) <-> ( F C_ ~P X /\ ( A e. X /\ ( ( nei ` J ) ` { A } ) C_ F ) ) ) ) |
| 18 | 6 17 | biadanii | |- ( A e. ( J fLim F ) <-> ( ( J e. Top /\ F e. U. ran Fil ) /\ ( F C_ ~P X /\ ( A e. X /\ ( ( nei ` J ) ` { A } ) C_ F ) ) ) ) |
| 19 | 2 4 18 | 3bitr4ri | |- ( A e. ( J fLim F ) <-> ( ( J e. Top /\ F e. U. ran Fil /\ F C_ ~P X ) /\ ( A e. X /\ ( ( nei ` J ) ` { A } ) C_ F ) ) ) |