This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of limit points of a filter. (Contributed by Jeff Hankins, 4-Sep-2009) (Revised by Stefan O'Rear, 6-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | flimval.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | flimval | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil ) → ( 𝐽 fLim 𝐹 ) = { 𝑥 ∈ 𝑋 ∣ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ⊆ 𝐹 ∧ 𝐹 ⊆ 𝒫 𝑋 ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | flimval.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | 1 | topopn | ⊢ ( 𝐽 ∈ Top → 𝑋 ∈ 𝐽 ) |
| 3 | 2 | adantr | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil ) → 𝑋 ∈ 𝐽 ) |
| 4 | rabexg | ⊢ ( 𝑋 ∈ 𝐽 → { 𝑥 ∈ 𝑋 ∣ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ⊆ 𝐹 ∧ 𝐹 ⊆ 𝒫 𝑋 ) } ∈ V ) | |
| 5 | 3 4 | syl | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil ) → { 𝑥 ∈ 𝑋 ∣ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ⊆ 𝐹 ∧ 𝐹 ⊆ 𝒫 𝑋 ) } ∈ V ) |
| 6 | simpl | ⊢ ( ( 𝑗 = 𝐽 ∧ 𝑓 = 𝐹 ) → 𝑗 = 𝐽 ) | |
| 7 | 6 | unieqd | ⊢ ( ( 𝑗 = 𝐽 ∧ 𝑓 = 𝐹 ) → ∪ 𝑗 = ∪ 𝐽 ) |
| 8 | 7 1 | eqtr4di | ⊢ ( ( 𝑗 = 𝐽 ∧ 𝑓 = 𝐹 ) → ∪ 𝑗 = 𝑋 ) |
| 9 | 6 | fveq2d | ⊢ ( ( 𝑗 = 𝐽 ∧ 𝑓 = 𝐹 ) → ( nei ‘ 𝑗 ) = ( nei ‘ 𝐽 ) ) |
| 10 | 9 | fveq1d | ⊢ ( ( 𝑗 = 𝐽 ∧ 𝑓 = 𝐹 ) → ( ( nei ‘ 𝑗 ) ‘ { 𝑥 } ) = ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ) |
| 11 | simpr | ⊢ ( ( 𝑗 = 𝐽 ∧ 𝑓 = 𝐹 ) → 𝑓 = 𝐹 ) | |
| 12 | 10 11 | sseq12d | ⊢ ( ( 𝑗 = 𝐽 ∧ 𝑓 = 𝐹 ) → ( ( ( nei ‘ 𝑗 ) ‘ { 𝑥 } ) ⊆ 𝑓 ↔ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ⊆ 𝐹 ) ) |
| 13 | 8 | pweqd | ⊢ ( ( 𝑗 = 𝐽 ∧ 𝑓 = 𝐹 ) → 𝒫 ∪ 𝑗 = 𝒫 𝑋 ) |
| 14 | 11 13 | sseq12d | ⊢ ( ( 𝑗 = 𝐽 ∧ 𝑓 = 𝐹 ) → ( 𝑓 ⊆ 𝒫 ∪ 𝑗 ↔ 𝐹 ⊆ 𝒫 𝑋 ) ) |
| 15 | 12 14 | anbi12d | ⊢ ( ( 𝑗 = 𝐽 ∧ 𝑓 = 𝐹 ) → ( ( ( ( nei ‘ 𝑗 ) ‘ { 𝑥 } ) ⊆ 𝑓 ∧ 𝑓 ⊆ 𝒫 ∪ 𝑗 ) ↔ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ⊆ 𝐹 ∧ 𝐹 ⊆ 𝒫 𝑋 ) ) ) |
| 16 | 8 15 | rabeqbidv | ⊢ ( ( 𝑗 = 𝐽 ∧ 𝑓 = 𝐹 ) → { 𝑥 ∈ ∪ 𝑗 ∣ ( ( ( nei ‘ 𝑗 ) ‘ { 𝑥 } ) ⊆ 𝑓 ∧ 𝑓 ⊆ 𝒫 ∪ 𝑗 ) } = { 𝑥 ∈ 𝑋 ∣ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ⊆ 𝐹 ∧ 𝐹 ⊆ 𝒫 𝑋 ) } ) |
| 17 | df-flim | ⊢ fLim = ( 𝑗 ∈ Top , 𝑓 ∈ ∪ ran Fil ↦ { 𝑥 ∈ ∪ 𝑗 ∣ ( ( ( nei ‘ 𝑗 ) ‘ { 𝑥 } ) ⊆ 𝑓 ∧ 𝑓 ⊆ 𝒫 ∪ 𝑗 ) } ) | |
| 18 | 16 17 | ovmpoga | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil ∧ { 𝑥 ∈ 𝑋 ∣ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ⊆ 𝐹 ∧ 𝐹 ⊆ 𝒫 𝑋 ) } ∈ V ) → ( 𝐽 fLim 𝐹 ) = { 𝑥 ∈ 𝑋 ∣ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ⊆ 𝐹 ∧ 𝐹 ⊆ 𝒫 𝑋 ) } ) |
| 19 | 5 18 | mpd3an3 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil ) → ( 𝐽 fLim 𝐹 ) = { 𝑥 ∈ 𝑋 ∣ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ⊆ 𝐹 ∧ 𝐹 ⊆ 𝒫 𝑋 ) } ) |