This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define a function (indexed by a topology j ) whose value is the limits of a filter f . (Contributed by Jeff Hankins, 4-Sep-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-flim | ⊢ fLim = ( 𝑗 ∈ Top , 𝑓 ∈ ∪ ran Fil ↦ { 𝑥 ∈ ∪ 𝑗 ∣ ( ( ( nei ‘ 𝑗 ) ‘ { 𝑥 } ) ⊆ 𝑓 ∧ 𝑓 ⊆ 𝒫 ∪ 𝑗 ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cflim | ⊢ fLim | |
| 1 | vj | ⊢ 𝑗 | |
| 2 | ctop | ⊢ Top | |
| 3 | vf | ⊢ 𝑓 | |
| 4 | cfil | ⊢ Fil | |
| 5 | 4 | crn | ⊢ ran Fil |
| 6 | 5 | cuni | ⊢ ∪ ran Fil |
| 7 | vx | ⊢ 𝑥 | |
| 8 | 1 | cv | ⊢ 𝑗 |
| 9 | 8 | cuni | ⊢ ∪ 𝑗 |
| 10 | cnei | ⊢ nei | |
| 11 | 8 10 | cfv | ⊢ ( nei ‘ 𝑗 ) |
| 12 | 7 | cv | ⊢ 𝑥 |
| 13 | 12 | csn | ⊢ { 𝑥 } |
| 14 | 13 11 | cfv | ⊢ ( ( nei ‘ 𝑗 ) ‘ { 𝑥 } ) |
| 15 | 3 | cv | ⊢ 𝑓 |
| 16 | 14 15 | wss | ⊢ ( ( nei ‘ 𝑗 ) ‘ { 𝑥 } ) ⊆ 𝑓 |
| 17 | 9 | cpw | ⊢ 𝒫 ∪ 𝑗 |
| 18 | 15 17 | wss | ⊢ 𝑓 ⊆ 𝒫 ∪ 𝑗 |
| 19 | 16 18 | wa | ⊢ ( ( ( nei ‘ 𝑗 ) ‘ { 𝑥 } ) ⊆ 𝑓 ∧ 𝑓 ⊆ 𝒫 ∪ 𝑗 ) |
| 20 | 19 7 9 | crab | ⊢ { 𝑥 ∈ ∪ 𝑗 ∣ ( ( ( nei ‘ 𝑗 ) ‘ { 𝑥 } ) ⊆ 𝑓 ∧ 𝑓 ⊆ 𝒫 ∪ 𝑗 ) } |
| 21 | 1 3 2 6 20 | cmpo | ⊢ ( 𝑗 ∈ Top , 𝑓 ∈ ∪ ran Fil ↦ { 𝑥 ∈ ∪ 𝑗 ∣ ( ( ( nei ‘ 𝑗 ) ‘ { 𝑥 } ) ⊆ 𝑓 ∧ 𝑓 ⊆ 𝒫 ∪ 𝑗 ) } ) |
| 22 | 0 21 | wceq | ⊢ fLim = ( 𝑗 ∈ Top , 𝑓 ∈ ∪ ran Fil ↦ { 𝑥 ∈ ∪ 𝑗 ∣ ( ( ( nei ‘ 𝑗 ) ‘ { 𝑥 } ) ⊆ 𝑓 ∧ 𝑓 ⊆ 𝒫 ∪ 𝑗 ) } ) |