This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Sufficient condition for an element of ( fiB ) . (Contributed by Mario Carneiro, 24-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elfir | |- ( ( B e. V /\ ( A C_ B /\ A =/= (/) /\ A e. Fin ) ) -> |^| A e. ( fi ` B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | |- ( ( A C_ B /\ A =/= (/) /\ A e. Fin ) -> A C_ B ) |
|
| 2 | elpw2g | |- ( B e. V -> ( A e. ~P B <-> A C_ B ) ) |
|
| 3 | 1 2 | imbitrrid | |- ( B e. V -> ( ( A C_ B /\ A =/= (/) /\ A e. Fin ) -> A e. ~P B ) ) |
| 4 | 3 | imp | |- ( ( B e. V /\ ( A C_ B /\ A =/= (/) /\ A e. Fin ) ) -> A e. ~P B ) |
| 5 | simpr3 | |- ( ( B e. V /\ ( A C_ B /\ A =/= (/) /\ A e. Fin ) ) -> A e. Fin ) |
|
| 6 | 4 5 | elind | |- ( ( B e. V /\ ( A C_ B /\ A =/= (/) /\ A e. Fin ) ) -> A e. ( ~P B i^i Fin ) ) |
| 7 | eqid | |- |^| A = |^| A |
|
| 8 | inteq | |- ( x = A -> |^| x = |^| A ) |
|
| 9 | 8 | rspceeqv | |- ( ( A e. ( ~P B i^i Fin ) /\ |^| A = |^| A ) -> E. x e. ( ~P B i^i Fin ) |^| A = |^| x ) |
| 10 | 6 7 9 | sylancl | |- ( ( B e. V /\ ( A C_ B /\ A =/= (/) /\ A e. Fin ) ) -> E. x e. ( ~P B i^i Fin ) |^| A = |^| x ) |
| 11 | simp2 | |- ( ( A C_ B /\ A =/= (/) /\ A e. Fin ) -> A =/= (/) ) |
|
| 12 | intex | |- ( A =/= (/) <-> |^| A e. _V ) |
|
| 13 | 11 12 | sylib | |- ( ( A C_ B /\ A =/= (/) /\ A e. Fin ) -> |^| A e. _V ) |
| 14 | id | |- ( B e. V -> B e. V ) |
|
| 15 | elfi | |- ( ( |^| A e. _V /\ B e. V ) -> ( |^| A e. ( fi ` B ) <-> E. x e. ( ~P B i^i Fin ) |^| A = |^| x ) ) |
|
| 16 | 13 14 15 | syl2anr | |- ( ( B e. V /\ ( A C_ B /\ A =/= (/) /\ A e. Fin ) ) -> ( |^| A e. ( fi ` B ) <-> E. x e. ( ~P B i^i Fin ) |^| A = |^| x ) ) |
| 17 | 10 16 | mpbird | |- ( ( B e. V /\ ( A C_ B /\ A =/= (/) /\ A e. Fin ) ) -> |^| A e. ( fi ` B ) ) |