This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The empty intersection need not be considered in the set of finite intersections. (Contributed by Mario Carneiro, 21-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elfi2 | |- ( B e. V -> ( A e. ( fi ` B ) <-> E. x e. ( ( ~P B i^i Fin ) \ { (/) } ) A = |^| x ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex | |- ( A e. ( fi ` B ) -> A e. _V ) |
|
| 2 | 1 | a1i | |- ( B e. V -> ( A e. ( fi ` B ) -> A e. _V ) ) |
| 3 | simpr | |- ( ( x e. ( ( ~P B i^i Fin ) \ { (/) } ) /\ A = |^| x ) -> A = |^| x ) |
|
| 4 | eldifsni | |- ( x e. ( ( ~P B i^i Fin ) \ { (/) } ) -> x =/= (/) ) |
|
| 5 | 4 | adantr | |- ( ( x e. ( ( ~P B i^i Fin ) \ { (/) } ) /\ A = |^| x ) -> x =/= (/) ) |
| 6 | intex | |- ( x =/= (/) <-> |^| x e. _V ) |
|
| 7 | 5 6 | sylib | |- ( ( x e. ( ( ~P B i^i Fin ) \ { (/) } ) /\ A = |^| x ) -> |^| x e. _V ) |
| 8 | 3 7 | eqeltrd | |- ( ( x e. ( ( ~P B i^i Fin ) \ { (/) } ) /\ A = |^| x ) -> A e. _V ) |
| 9 | 8 | rexlimiva | |- ( E. x e. ( ( ~P B i^i Fin ) \ { (/) } ) A = |^| x -> A e. _V ) |
| 10 | 9 | a1i | |- ( B e. V -> ( E. x e. ( ( ~P B i^i Fin ) \ { (/) } ) A = |^| x -> A e. _V ) ) |
| 11 | elfi | |- ( ( A e. _V /\ B e. V ) -> ( A e. ( fi ` B ) <-> E. x e. ( ~P B i^i Fin ) A = |^| x ) ) |
|
| 12 | vprc | |- -. _V e. _V |
|
| 13 | elsni | |- ( x e. { (/) } -> x = (/) ) |
|
| 14 | 13 | inteqd | |- ( x e. { (/) } -> |^| x = |^| (/) ) |
| 15 | int0 | |- |^| (/) = _V |
|
| 16 | 14 15 | eqtrdi | |- ( x e. { (/) } -> |^| x = _V ) |
| 17 | 16 | eleq1d | |- ( x e. { (/) } -> ( |^| x e. _V <-> _V e. _V ) ) |
| 18 | 12 17 | mtbiri | |- ( x e. { (/) } -> -. |^| x e. _V ) |
| 19 | simpr | |- ( ( ( A e. _V /\ B e. V ) /\ A = |^| x ) -> A = |^| x ) |
|
| 20 | simpll | |- ( ( ( A e. _V /\ B e. V ) /\ A = |^| x ) -> A e. _V ) |
|
| 21 | 19 20 | eqeltrrd | |- ( ( ( A e. _V /\ B e. V ) /\ A = |^| x ) -> |^| x e. _V ) |
| 22 | 18 21 | nsyl3 | |- ( ( ( A e. _V /\ B e. V ) /\ A = |^| x ) -> -. x e. { (/) } ) |
| 23 | 22 | biantrud | |- ( ( ( A e. _V /\ B e. V ) /\ A = |^| x ) -> ( x e. ( ~P B i^i Fin ) <-> ( x e. ( ~P B i^i Fin ) /\ -. x e. { (/) } ) ) ) |
| 24 | eldif | |- ( x e. ( ( ~P B i^i Fin ) \ { (/) } ) <-> ( x e. ( ~P B i^i Fin ) /\ -. x e. { (/) } ) ) |
|
| 25 | 23 24 | bitr4di | |- ( ( ( A e. _V /\ B e. V ) /\ A = |^| x ) -> ( x e. ( ~P B i^i Fin ) <-> x e. ( ( ~P B i^i Fin ) \ { (/) } ) ) ) |
| 26 | 25 | pm5.32da | |- ( ( A e. _V /\ B e. V ) -> ( ( A = |^| x /\ x e. ( ~P B i^i Fin ) ) <-> ( A = |^| x /\ x e. ( ( ~P B i^i Fin ) \ { (/) } ) ) ) ) |
| 27 | ancom | |- ( ( x e. ( ~P B i^i Fin ) /\ A = |^| x ) <-> ( A = |^| x /\ x e. ( ~P B i^i Fin ) ) ) |
|
| 28 | ancom | |- ( ( x e. ( ( ~P B i^i Fin ) \ { (/) } ) /\ A = |^| x ) <-> ( A = |^| x /\ x e. ( ( ~P B i^i Fin ) \ { (/) } ) ) ) |
|
| 29 | 26 27 28 | 3bitr4g | |- ( ( A e. _V /\ B e. V ) -> ( ( x e. ( ~P B i^i Fin ) /\ A = |^| x ) <-> ( x e. ( ( ~P B i^i Fin ) \ { (/) } ) /\ A = |^| x ) ) ) |
| 30 | 29 | rexbidv2 | |- ( ( A e. _V /\ B e. V ) -> ( E. x e. ( ~P B i^i Fin ) A = |^| x <-> E. x e. ( ( ~P B i^i Fin ) \ { (/) } ) A = |^| x ) ) |
| 31 | 11 30 | bitrd | |- ( ( A e. _V /\ B e. V ) -> ( A e. ( fi ` B ) <-> E. x e. ( ( ~P B i^i Fin ) \ { (/) } ) A = |^| x ) ) |
| 32 | 31 | expcom | |- ( B e. V -> ( A e. _V -> ( A e. ( fi ` B ) <-> E. x e. ( ( ~P B i^i Fin ) \ { (/) } ) A = |^| x ) ) ) |
| 33 | 2 10 32 | pm5.21ndd | |- ( B e. V -> ( A e. ( fi ` B ) <-> E. x e. ( ( ~P B i^i Fin ) \ { (/) } ) A = |^| x ) ) |