This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Commute the arguments to the ball function. (Contributed by Mario Carneiro, 22-Jan-2014) (Revised by Thierry Arnoux, 11-Mar-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | blcomps | ⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑅 ∈ ℝ* ) ∧ ( 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( 𝐴 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ↔ 𝑃 ∈ ( 𝐴 ( ball ‘ 𝐷 ) 𝑅 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elbl2ps | ⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑅 ∈ ℝ* ) ∧ ( 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( 𝐴 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ↔ ( 𝑃 𝐷 𝐴 ) < 𝑅 ) ) | |
| 2 | elbl3ps | ⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑅 ∈ ℝ* ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝑃 ∈ 𝑋 ) ) → ( 𝑃 ∈ ( 𝐴 ( ball ‘ 𝐷 ) 𝑅 ) ↔ ( 𝑃 𝐷 𝐴 ) < 𝑅 ) ) | |
| 3 | 2 | ancom2s | ⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑅 ∈ ℝ* ) ∧ ( 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( 𝑃 ∈ ( 𝐴 ( ball ‘ 𝐷 ) 𝑅 ) ↔ ( 𝑃 𝐷 𝐴 ) < 𝑅 ) ) |
| 4 | 1 3 | bitr4d | ⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑅 ∈ ℝ* ) ∧ ( 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( 𝐴 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ↔ 𝑃 ∈ ( 𝐴 ( ball ‘ 𝐷 ) 𝑅 ) ) ) |