This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a ball, alternative definition. (Contributed by Thierry Arnoux, 26-Jan-2018) (Revised by Thierry Arnoux, 11-Mar-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elbl4 | |- ( ( ( D e. ( PsMet ` X ) /\ R e. RR+ ) /\ ( A e. X /\ B e. X ) ) -> ( B e. ( A ( ball ` D ) R ) <-> B ( `' D " ( 0 [,) R ) ) A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpxr | |- ( R e. RR+ -> R e. RR* ) |
|
| 2 | blcomps | |- ( ( ( D e. ( PsMet ` X ) /\ R e. RR* ) /\ ( A e. X /\ B e. X ) ) -> ( B e. ( A ( ball ` D ) R ) <-> A e. ( B ( ball ` D ) R ) ) ) |
|
| 3 | 1 2 | sylanl2 | |- ( ( ( D e. ( PsMet ` X ) /\ R e. RR+ ) /\ ( A e. X /\ B e. X ) ) -> ( B e. ( A ( ball ` D ) R ) <-> A e. ( B ( ball ` D ) R ) ) ) |
| 4 | simpll | |- ( ( ( D e. ( PsMet ` X ) /\ R e. RR+ ) /\ ( A e. X /\ B e. X ) ) -> D e. ( PsMet ` X ) ) |
|
| 5 | simprr | |- ( ( ( D e. ( PsMet ` X ) /\ R e. RR+ ) /\ ( A e. X /\ B e. X ) ) -> B e. X ) |
|
| 6 | simplr | |- ( ( ( D e. ( PsMet ` X ) /\ R e. RR+ ) /\ ( A e. X /\ B e. X ) ) -> R e. RR+ ) |
|
| 7 | blval2 | |- ( ( D e. ( PsMet ` X ) /\ B e. X /\ R e. RR+ ) -> ( B ( ball ` D ) R ) = ( ( `' D " ( 0 [,) R ) ) " { B } ) ) |
|
| 8 | 7 | eleq2d | |- ( ( D e. ( PsMet ` X ) /\ B e. X /\ R e. RR+ ) -> ( A e. ( B ( ball ` D ) R ) <-> A e. ( ( `' D " ( 0 [,) R ) ) " { B } ) ) ) |
| 9 | 4 5 6 8 | syl3anc | |- ( ( ( D e. ( PsMet ` X ) /\ R e. RR+ ) /\ ( A e. X /\ B e. X ) ) -> ( A e. ( B ( ball ` D ) R ) <-> A e. ( ( `' D " ( 0 [,) R ) ) " { B } ) ) ) |
| 10 | elimasng | |- ( ( B e. X /\ A e. X ) -> ( A e. ( ( `' D " ( 0 [,) R ) ) " { B } ) <-> <. B , A >. e. ( `' D " ( 0 [,) R ) ) ) ) |
|
| 11 | df-br | |- ( B ( `' D " ( 0 [,) R ) ) A <-> <. B , A >. e. ( `' D " ( 0 [,) R ) ) ) |
|
| 12 | 10 11 | bitr4di | |- ( ( B e. X /\ A e. X ) -> ( A e. ( ( `' D " ( 0 [,) R ) ) " { B } ) <-> B ( `' D " ( 0 [,) R ) ) A ) ) |
| 13 | 12 | ancoms | |- ( ( A e. X /\ B e. X ) -> ( A e. ( ( `' D " ( 0 [,) R ) ) " { B } ) <-> B ( `' D " ( 0 [,) R ) ) A ) ) |
| 14 | 13 | adantl | |- ( ( ( D e. ( PsMet ` X ) /\ R e. RR+ ) /\ ( A e. X /\ B e. X ) ) -> ( A e. ( ( `' D " ( 0 [,) R ) ) " { B } ) <-> B ( `' D " ( 0 [,) R ) ) A ) ) |
| 15 | 3 9 14 | 3bitrd | |- ( ( ( D e. ( PsMet ` X ) /\ R e. RR+ ) /\ ( A e. X /\ B e. X ) ) -> ( B e. ( A ( ball ` D ) R ) <-> B ( `' D " ( 0 [,) R ) ) A ) ) |