This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the operation value of the operation value of two nested maps-to notation is not empty, all involved arguments belong to the corresponding base classes of the maps-to notations. (Contributed by AV, 21-May-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | el2mpocsbcl.o | ⊢ 𝑂 = ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ ( 𝑠 ∈ 𝐶 , 𝑡 ∈ 𝐷 ↦ 𝐸 ) ) | |
| Assertion | el2mpocsbcl | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉 ) → ( 𝑊 ∈ ( 𝑆 ( 𝑋 𝑂 𝑌 ) 𝑇 ) → ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑆 ∈ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐶 ∧ 𝑇 ∈ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐷 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | el2mpocsbcl.o | ⊢ 𝑂 = ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ ( 𝑠 ∈ 𝐶 , 𝑡 ∈ 𝐷 ↦ 𝐸 ) ) | |
| 2 | simpl | ⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉 ) ∧ 𝑊 ∈ ( 𝑆 ( 𝑋 𝑂 𝑌 ) 𝑇 ) ) ) → ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) ) | |
| 3 | nfcv | ⊢ Ⅎ 𝑎 ( 𝑠 ∈ 𝐶 , 𝑡 ∈ 𝐷 ↦ 𝐸 ) | |
| 4 | nfcv | ⊢ Ⅎ 𝑏 ( 𝑠 ∈ 𝐶 , 𝑡 ∈ 𝐷 ↦ 𝐸 ) | |
| 5 | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑎 / 𝑥 ⦌ ⦋ 𝑏 / 𝑦 ⦌ 𝐶 | |
| 6 | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑎 / 𝑥 ⦌ ⦋ 𝑏 / 𝑦 ⦌ 𝐷 | |
| 7 | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑎 / 𝑥 ⦌ ⦋ 𝑏 / 𝑦 ⦌ 𝐸 | |
| 8 | 5 6 7 | nfmpo | ⊢ Ⅎ 𝑥 ( 𝑠 ∈ ⦋ 𝑎 / 𝑥 ⦌ ⦋ 𝑏 / 𝑦 ⦌ 𝐶 , 𝑡 ∈ ⦋ 𝑎 / 𝑥 ⦌ ⦋ 𝑏 / 𝑦 ⦌ 𝐷 ↦ ⦋ 𝑎 / 𝑥 ⦌ ⦋ 𝑏 / 𝑦 ⦌ 𝐸 ) |
| 9 | nfcv | ⊢ Ⅎ 𝑦 𝑎 | |
| 10 | nfcsb1v | ⊢ Ⅎ 𝑦 ⦋ 𝑏 / 𝑦 ⦌ 𝐶 | |
| 11 | 9 10 | nfcsbw | ⊢ Ⅎ 𝑦 ⦋ 𝑎 / 𝑥 ⦌ ⦋ 𝑏 / 𝑦 ⦌ 𝐶 |
| 12 | nfcsb1v | ⊢ Ⅎ 𝑦 ⦋ 𝑏 / 𝑦 ⦌ 𝐷 | |
| 13 | 9 12 | nfcsbw | ⊢ Ⅎ 𝑦 ⦋ 𝑎 / 𝑥 ⦌ ⦋ 𝑏 / 𝑦 ⦌ 𝐷 |
| 14 | nfcsb1v | ⊢ Ⅎ 𝑦 ⦋ 𝑏 / 𝑦 ⦌ 𝐸 | |
| 15 | 9 14 | nfcsbw | ⊢ Ⅎ 𝑦 ⦋ 𝑎 / 𝑥 ⦌ ⦋ 𝑏 / 𝑦 ⦌ 𝐸 |
| 16 | 11 13 15 | nfmpo | ⊢ Ⅎ 𝑦 ( 𝑠 ∈ ⦋ 𝑎 / 𝑥 ⦌ ⦋ 𝑏 / 𝑦 ⦌ 𝐶 , 𝑡 ∈ ⦋ 𝑎 / 𝑥 ⦌ ⦋ 𝑏 / 𝑦 ⦌ 𝐷 ↦ ⦋ 𝑎 / 𝑥 ⦌ ⦋ 𝑏 / 𝑦 ⦌ 𝐸 ) |
| 17 | csbeq1a | ⊢ ( 𝑥 = 𝑎 → 𝐶 = ⦋ 𝑎 / 𝑥 ⦌ 𝐶 ) | |
| 18 | csbeq1a | ⊢ ( 𝑦 = 𝑏 → 𝐶 = ⦋ 𝑏 / 𝑦 ⦌ 𝐶 ) | |
| 19 | 18 | csbeq2dv | ⊢ ( 𝑦 = 𝑏 → ⦋ 𝑎 / 𝑥 ⦌ 𝐶 = ⦋ 𝑎 / 𝑥 ⦌ ⦋ 𝑏 / 𝑦 ⦌ 𝐶 ) |
| 20 | 17 19 | sylan9eq | ⊢ ( ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑏 ) → 𝐶 = ⦋ 𝑎 / 𝑥 ⦌ ⦋ 𝑏 / 𝑦 ⦌ 𝐶 ) |
| 21 | csbeq1a | ⊢ ( 𝑥 = 𝑎 → 𝐷 = ⦋ 𝑎 / 𝑥 ⦌ 𝐷 ) | |
| 22 | csbeq1a | ⊢ ( 𝑦 = 𝑏 → 𝐷 = ⦋ 𝑏 / 𝑦 ⦌ 𝐷 ) | |
| 23 | 22 | csbeq2dv | ⊢ ( 𝑦 = 𝑏 → ⦋ 𝑎 / 𝑥 ⦌ 𝐷 = ⦋ 𝑎 / 𝑥 ⦌ ⦋ 𝑏 / 𝑦 ⦌ 𝐷 ) |
| 24 | 21 23 | sylan9eq | ⊢ ( ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑏 ) → 𝐷 = ⦋ 𝑎 / 𝑥 ⦌ ⦋ 𝑏 / 𝑦 ⦌ 𝐷 ) |
| 25 | csbeq1a | ⊢ ( 𝑥 = 𝑎 → 𝐸 = ⦋ 𝑎 / 𝑥 ⦌ 𝐸 ) | |
| 26 | csbeq1a | ⊢ ( 𝑦 = 𝑏 → 𝐸 = ⦋ 𝑏 / 𝑦 ⦌ 𝐸 ) | |
| 27 | 26 | csbeq2dv | ⊢ ( 𝑦 = 𝑏 → ⦋ 𝑎 / 𝑥 ⦌ 𝐸 = ⦋ 𝑎 / 𝑥 ⦌ ⦋ 𝑏 / 𝑦 ⦌ 𝐸 ) |
| 28 | 25 27 | sylan9eq | ⊢ ( ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑏 ) → 𝐸 = ⦋ 𝑎 / 𝑥 ⦌ ⦋ 𝑏 / 𝑦 ⦌ 𝐸 ) |
| 29 | 20 24 28 | mpoeq123dv | ⊢ ( ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑏 ) → ( 𝑠 ∈ 𝐶 , 𝑡 ∈ 𝐷 ↦ 𝐸 ) = ( 𝑠 ∈ ⦋ 𝑎 / 𝑥 ⦌ ⦋ 𝑏 / 𝑦 ⦌ 𝐶 , 𝑡 ∈ ⦋ 𝑎 / 𝑥 ⦌ ⦋ 𝑏 / 𝑦 ⦌ 𝐷 ↦ ⦋ 𝑎 / 𝑥 ⦌ ⦋ 𝑏 / 𝑦 ⦌ 𝐸 ) ) |
| 30 | 3 4 8 16 29 | cbvmpo | ⊢ ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ ( 𝑠 ∈ 𝐶 , 𝑡 ∈ 𝐷 ↦ 𝐸 ) ) = ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐵 ↦ ( 𝑠 ∈ ⦋ 𝑎 / 𝑥 ⦌ ⦋ 𝑏 / 𝑦 ⦌ 𝐶 , 𝑡 ∈ ⦋ 𝑎 / 𝑥 ⦌ ⦋ 𝑏 / 𝑦 ⦌ 𝐷 ↦ ⦋ 𝑎 / 𝑥 ⦌ ⦋ 𝑏 / 𝑦 ⦌ 𝐸 ) ) |
| 31 | 1 30 | eqtri | ⊢ 𝑂 = ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐵 ↦ ( 𝑠 ∈ ⦋ 𝑎 / 𝑥 ⦌ ⦋ 𝑏 / 𝑦 ⦌ 𝐶 , 𝑡 ∈ ⦋ 𝑎 / 𝑥 ⦌ ⦋ 𝑏 / 𝑦 ⦌ 𝐷 ↦ ⦋ 𝑎 / 𝑥 ⦌ ⦋ 𝑏 / 𝑦 ⦌ 𝐸 ) ) |
| 32 | 31 | a1i | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉 ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) ) → 𝑂 = ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐵 ↦ ( 𝑠 ∈ ⦋ 𝑎 / 𝑥 ⦌ ⦋ 𝑏 / 𝑦 ⦌ 𝐶 , 𝑡 ∈ ⦋ 𝑎 / 𝑥 ⦌ ⦋ 𝑏 / 𝑦 ⦌ 𝐷 ↦ ⦋ 𝑎 / 𝑥 ⦌ ⦋ 𝑏 / 𝑦 ⦌ 𝐸 ) ) ) |
| 33 | csbeq1 | ⊢ ( 𝑎 = 𝑋 → ⦋ 𝑎 / 𝑥 ⦌ ⦋ 𝑏 / 𝑦 ⦌ 𝐶 = ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑏 / 𝑦 ⦌ 𝐶 ) | |
| 34 | 33 | adantr | ⊢ ( ( 𝑎 = 𝑋 ∧ 𝑏 = 𝑌 ) → ⦋ 𝑎 / 𝑥 ⦌ ⦋ 𝑏 / 𝑦 ⦌ 𝐶 = ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑏 / 𝑦 ⦌ 𝐶 ) |
| 35 | csbeq1 | ⊢ ( 𝑏 = 𝑌 → ⦋ 𝑏 / 𝑦 ⦌ 𝐶 = ⦋ 𝑌 / 𝑦 ⦌ 𝐶 ) | |
| 36 | 35 | adantl | ⊢ ( ( 𝑎 = 𝑋 ∧ 𝑏 = 𝑌 ) → ⦋ 𝑏 / 𝑦 ⦌ 𝐶 = ⦋ 𝑌 / 𝑦 ⦌ 𝐶 ) |
| 37 | 36 | csbeq2dv | ⊢ ( ( 𝑎 = 𝑋 ∧ 𝑏 = 𝑌 ) → ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑏 / 𝑦 ⦌ 𝐶 = ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐶 ) |
| 38 | 34 37 | eqtrd | ⊢ ( ( 𝑎 = 𝑋 ∧ 𝑏 = 𝑌 ) → ⦋ 𝑎 / 𝑥 ⦌ ⦋ 𝑏 / 𝑦 ⦌ 𝐶 = ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐶 ) |
| 39 | csbeq1 | ⊢ ( 𝑎 = 𝑋 → ⦋ 𝑎 / 𝑥 ⦌ ⦋ 𝑏 / 𝑦 ⦌ 𝐷 = ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑏 / 𝑦 ⦌ 𝐷 ) | |
| 40 | 39 | adantr | ⊢ ( ( 𝑎 = 𝑋 ∧ 𝑏 = 𝑌 ) → ⦋ 𝑎 / 𝑥 ⦌ ⦋ 𝑏 / 𝑦 ⦌ 𝐷 = ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑏 / 𝑦 ⦌ 𝐷 ) |
| 41 | csbeq1 | ⊢ ( 𝑏 = 𝑌 → ⦋ 𝑏 / 𝑦 ⦌ 𝐷 = ⦋ 𝑌 / 𝑦 ⦌ 𝐷 ) | |
| 42 | 41 | adantl | ⊢ ( ( 𝑎 = 𝑋 ∧ 𝑏 = 𝑌 ) → ⦋ 𝑏 / 𝑦 ⦌ 𝐷 = ⦋ 𝑌 / 𝑦 ⦌ 𝐷 ) |
| 43 | 42 | csbeq2dv | ⊢ ( ( 𝑎 = 𝑋 ∧ 𝑏 = 𝑌 ) → ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑏 / 𝑦 ⦌ 𝐷 = ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐷 ) |
| 44 | 40 43 | eqtrd | ⊢ ( ( 𝑎 = 𝑋 ∧ 𝑏 = 𝑌 ) → ⦋ 𝑎 / 𝑥 ⦌ ⦋ 𝑏 / 𝑦 ⦌ 𝐷 = ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐷 ) |
| 45 | csbeq1 | ⊢ ( 𝑎 = 𝑋 → ⦋ 𝑎 / 𝑥 ⦌ ⦋ 𝑏 / 𝑦 ⦌ 𝐸 = ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑏 / 𝑦 ⦌ 𝐸 ) | |
| 46 | 45 | adantr | ⊢ ( ( 𝑎 = 𝑋 ∧ 𝑏 = 𝑌 ) → ⦋ 𝑎 / 𝑥 ⦌ ⦋ 𝑏 / 𝑦 ⦌ 𝐸 = ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑏 / 𝑦 ⦌ 𝐸 ) |
| 47 | csbeq1 | ⊢ ( 𝑏 = 𝑌 → ⦋ 𝑏 / 𝑦 ⦌ 𝐸 = ⦋ 𝑌 / 𝑦 ⦌ 𝐸 ) | |
| 48 | 47 | adantl | ⊢ ( ( 𝑎 = 𝑋 ∧ 𝑏 = 𝑌 ) → ⦋ 𝑏 / 𝑦 ⦌ 𝐸 = ⦋ 𝑌 / 𝑦 ⦌ 𝐸 ) |
| 49 | 48 | csbeq2dv | ⊢ ( ( 𝑎 = 𝑋 ∧ 𝑏 = 𝑌 ) → ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑏 / 𝑦 ⦌ 𝐸 = ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐸 ) |
| 50 | 46 49 | eqtrd | ⊢ ( ( 𝑎 = 𝑋 ∧ 𝑏 = 𝑌 ) → ⦋ 𝑎 / 𝑥 ⦌ ⦋ 𝑏 / 𝑦 ⦌ 𝐸 = ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐸 ) |
| 51 | 38 44 50 | mpoeq123dv | ⊢ ( ( 𝑎 = 𝑋 ∧ 𝑏 = 𝑌 ) → ( 𝑠 ∈ ⦋ 𝑎 / 𝑥 ⦌ ⦋ 𝑏 / 𝑦 ⦌ 𝐶 , 𝑡 ∈ ⦋ 𝑎 / 𝑥 ⦌ ⦋ 𝑏 / 𝑦 ⦌ 𝐷 ↦ ⦋ 𝑎 / 𝑥 ⦌ ⦋ 𝑏 / 𝑦 ⦌ 𝐸 ) = ( 𝑠 ∈ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐶 , 𝑡 ∈ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐷 ↦ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐸 ) ) |
| 52 | 51 | adantl | ⊢ ( ( ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉 ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) ) ∧ ( 𝑎 = 𝑋 ∧ 𝑏 = 𝑌 ) ) → ( 𝑠 ∈ ⦋ 𝑎 / 𝑥 ⦌ ⦋ 𝑏 / 𝑦 ⦌ 𝐶 , 𝑡 ∈ ⦋ 𝑎 / 𝑥 ⦌ ⦋ 𝑏 / 𝑦 ⦌ 𝐷 ↦ ⦋ 𝑎 / 𝑥 ⦌ ⦋ 𝑏 / 𝑦 ⦌ 𝐸 ) = ( 𝑠 ∈ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐶 , 𝑡 ∈ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐷 ↦ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐸 ) ) |
| 53 | simpl | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) → 𝑋 ∈ 𝐴 ) | |
| 54 | 53 | adantl | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉 ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) ) → 𝑋 ∈ 𝐴 ) |
| 55 | simpr | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) → 𝑌 ∈ 𝐵 ) | |
| 56 | 55 | adantl | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉 ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) ) → 𝑌 ∈ 𝐵 ) |
| 57 | simpl | ⊢ ( ( 𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉 ) → 𝐶 ∈ 𝑈 ) | |
| 58 | 57 | ralimi | ⊢ ( ∀ 𝑦 ∈ 𝐵 ( 𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉 ) → ∀ 𝑦 ∈ 𝐵 𝐶 ∈ 𝑈 ) |
| 59 | rspcsbela | ⊢ ( ( 𝑌 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 𝐶 ∈ 𝑈 ) → ⦋ 𝑌 / 𝑦 ⦌ 𝐶 ∈ 𝑈 ) | |
| 60 | 55 58 59 | syl2an | ⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) ∧ ∀ 𝑦 ∈ 𝐵 ( 𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉 ) ) → ⦋ 𝑌 / 𝑦 ⦌ 𝐶 ∈ 𝑈 ) |
| 61 | 60 | ex | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) → ( ∀ 𝑦 ∈ 𝐵 ( 𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉 ) → ⦋ 𝑌 / 𝑦 ⦌ 𝐶 ∈ 𝑈 ) ) |
| 62 | 61 | ralimdv | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉 ) → ∀ 𝑥 ∈ 𝐴 ⦋ 𝑌 / 𝑦 ⦌ 𝐶 ∈ 𝑈 ) ) |
| 63 | 62 | impcom | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉 ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) ) → ∀ 𝑥 ∈ 𝐴 ⦋ 𝑌 / 𝑦 ⦌ 𝐶 ∈ 𝑈 ) |
| 64 | rspcsbela | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ⦋ 𝑌 / 𝑦 ⦌ 𝐶 ∈ 𝑈 ) → ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐶 ∈ 𝑈 ) | |
| 65 | 54 63 64 | syl2anc | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉 ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) ) → ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐶 ∈ 𝑈 ) |
| 66 | simpr | ⊢ ( ( 𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉 ) → 𝐷 ∈ 𝑉 ) | |
| 67 | 66 | ralimi | ⊢ ( ∀ 𝑦 ∈ 𝐵 ( 𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉 ) → ∀ 𝑦 ∈ 𝐵 𝐷 ∈ 𝑉 ) |
| 68 | rspcsbela | ⊢ ( ( 𝑌 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 𝐷 ∈ 𝑉 ) → ⦋ 𝑌 / 𝑦 ⦌ 𝐷 ∈ 𝑉 ) | |
| 69 | 55 67 68 | syl2an | ⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) ∧ ∀ 𝑦 ∈ 𝐵 ( 𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉 ) ) → ⦋ 𝑌 / 𝑦 ⦌ 𝐷 ∈ 𝑉 ) |
| 70 | 69 | ex | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) → ( ∀ 𝑦 ∈ 𝐵 ( 𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉 ) → ⦋ 𝑌 / 𝑦 ⦌ 𝐷 ∈ 𝑉 ) ) |
| 71 | 70 | ralimdv | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉 ) → ∀ 𝑥 ∈ 𝐴 ⦋ 𝑌 / 𝑦 ⦌ 𝐷 ∈ 𝑉 ) ) |
| 72 | 71 | impcom | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉 ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) ) → ∀ 𝑥 ∈ 𝐴 ⦋ 𝑌 / 𝑦 ⦌ 𝐷 ∈ 𝑉 ) |
| 73 | rspcsbela | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ⦋ 𝑌 / 𝑦 ⦌ 𝐷 ∈ 𝑉 ) → ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐷 ∈ 𝑉 ) | |
| 74 | 54 72 73 | syl2anc | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉 ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) ) → ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐷 ∈ 𝑉 ) |
| 75 | mpoexga | ⊢ ( ( ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐶 ∈ 𝑈 ∧ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐷 ∈ 𝑉 ) → ( 𝑠 ∈ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐶 , 𝑡 ∈ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐷 ↦ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐸 ) ∈ V ) | |
| 76 | 65 74 75 | syl2anc | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉 ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑠 ∈ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐶 , 𝑡 ∈ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐷 ↦ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐸 ) ∈ V ) |
| 77 | 32 52 54 56 76 | ovmpod | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉 ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑋 𝑂 𝑌 ) = ( 𝑠 ∈ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐶 , 𝑡 ∈ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐷 ↦ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐸 ) ) |
| 78 | 77 | oveqd | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉 ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑆 ( 𝑋 𝑂 𝑌 ) 𝑇 ) = ( 𝑆 ( 𝑠 ∈ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐶 , 𝑡 ∈ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐷 ↦ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐸 ) 𝑇 ) ) |
| 79 | 78 | eleq2d | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉 ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑊 ∈ ( 𝑆 ( 𝑋 𝑂 𝑌 ) 𝑇 ) ↔ 𝑊 ∈ ( 𝑆 ( 𝑠 ∈ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐶 , 𝑡 ∈ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐷 ↦ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐸 ) 𝑇 ) ) ) |
| 80 | eqid | ⊢ ( 𝑠 ∈ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐶 , 𝑡 ∈ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐷 ↦ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐸 ) = ( 𝑠 ∈ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐶 , 𝑡 ∈ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐷 ↦ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐸 ) | |
| 81 | 80 | elmpocl | ⊢ ( 𝑊 ∈ ( 𝑆 ( 𝑠 ∈ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐶 , 𝑡 ∈ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐷 ↦ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐸 ) 𝑇 ) → ( 𝑆 ∈ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐶 ∧ 𝑇 ∈ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐷 ) ) |
| 82 | 79 81 | biimtrdi | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉 ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑊 ∈ ( 𝑆 ( 𝑋 𝑂 𝑌 ) 𝑇 ) → ( 𝑆 ∈ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐶 ∧ 𝑇 ∈ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐷 ) ) ) |
| 83 | 82 | impancom | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉 ) ∧ 𝑊 ∈ ( 𝑆 ( 𝑋 𝑂 𝑌 ) 𝑇 ) ) → ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑆 ∈ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐶 ∧ 𝑇 ∈ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐷 ) ) ) |
| 84 | 83 | impcom | ⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉 ) ∧ 𝑊 ∈ ( 𝑆 ( 𝑋 𝑂 𝑌 ) 𝑇 ) ) ) → ( 𝑆 ∈ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐶 ∧ 𝑇 ∈ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐷 ) ) |
| 85 | 2 84 | jca | ⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉 ) ∧ 𝑊 ∈ ( 𝑆 ( 𝑋 𝑂 𝑌 ) 𝑇 ) ) ) → ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑆 ∈ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐶 ∧ 𝑇 ∈ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐷 ) ) ) |
| 86 | 85 | ex | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) → ( ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉 ) ∧ 𝑊 ∈ ( 𝑆 ( 𝑋 𝑂 𝑌 ) 𝑇 ) ) → ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑆 ∈ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐶 ∧ 𝑇 ∈ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐷 ) ) ) ) |
| 87 | 1 | mpondm0 | ⊢ ( ¬ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 𝑂 𝑌 ) = ∅ ) |
| 88 | 87 | oveqd | ⊢ ( ¬ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑆 ( 𝑋 𝑂 𝑌 ) 𝑇 ) = ( 𝑆 ∅ 𝑇 ) ) |
| 89 | 88 | eleq2d | ⊢ ( ¬ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑊 ∈ ( 𝑆 ( 𝑋 𝑂 𝑌 ) 𝑇 ) ↔ 𝑊 ∈ ( 𝑆 ∅ 𝑇 ) ) ) |
| 90 | noel | ⊢ ¬ 𝑊 ∈ ∅ | |
| 91 | 90 | pm2.21i | ⊢ ( 𝑊 ∈ ∅ → ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑆 ∈ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐶 ∧ 𝑇 ∈ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐷 ) ) ) |
| 92 | 0ov | ⊢ ( 𝑆 ∅ 𝑇 ) = ∅ | |
| 93 | 91 92 | eleq2s | ⊢ ( 𝑊 ∈ ( 𝑆 ∅ 𝑇 ) → ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑆 ∈ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐶 ∧ 𝑇 ∈ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐷 ) ) ) |
| 94 | 89 93 | biimtrdi | ⊢ ( ¬ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑊 ∈ ( 𝑆 ( 𝑋 𝑂 𝑌 ) 𝑇 ) → ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑆 ∈ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐶 ∧ 𝑇 ∈ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐷 ) ) ) ) |
| 95 | 94 | adantld | ⊢ ( ¬ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) → ( ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉 ) ∧ 𝑊 ∈ ( 𝑆 ( 𝑋 𝑂 𝑌 ) 𝑇 ) ) → ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑆 ∈ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐶 ∧ 𝑇 ∈ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐷 ) ) ) ) |
| 96 | 86 95 | pm2.61i | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉 ) ∧ 𝑊 ∈ ( 𝑆 ( 𝑋 𝑂 𝑌 ) 𝑇 ) ) → ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑆 ∈ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐶 ∧ 𝑇 ∈ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐷 ) ) ) |
| 97 | 96 | ex | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉 ) → ( 𝑊 ∈ ( 𝑆 ( 𝑋 𝑂 𝑌 ) 𝑇 ) → ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑆 ∈ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐶 ∧ 𝑇 ∈ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐷 ) ) ) ) |