This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the operation value of the operation value of two nested maps-to notation is not empty, all involved arguments belong to the corresponding base classes of the maps-to notations. Using implicit substitution. (Contributed by AV, 21-May-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | el2mpocl.o | ⊢ 𝑂 = ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ ( 𝑠 ∈ 𝐶 , 𝑡 ∈ 𝐷 ↦ 𝐸 ) ) | |
| el2mpocl.e | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → ( 𝐶 = 𝐹 ∧ 𝐷 = 𝐺 ) ) | ||
| Assertion | el2mpocl | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉 ) → ( 𝑊 ∈ ( 𝑆 ( 𝑋 𝑂 𝑌 ) 𝑇 ) → ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑆 ∈ 𝐹 ∧ 𝑇 ∈ 𝐺 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | el2mpocl.o | ⊢ 𝑂 = ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ ( 𝑠 ∈ 𝐶 , 𝑡 ∈ 𝐷 ↦ 𝐸 ) ) | |
| 2 | el2mpocl.e | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → ( 𝐶 = 𝐹 ∧ 𝐷 = 𝐺 ) ) | |
| 3 | 1 | el2mpocsbcl | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉 ) → ( 𝑊 ∈ ( 𝑆 ( 𝑋 𝑂 𝑌 ) 𝑇 ) → ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑆 ∈ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐶 ∧ 𝑇 ∈ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐷 ) ) ) ) |
| 4 | simpl | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) → 𝑋 ∈ 𝐴 ) | |
| 5 | simplr | ⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑥 = 𝑋 ) → 𝑌 ∈ 𝐵 ) | |
| 6 | 2 | simpld | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → 𝐶 = 𝐹 ) |
| 7 | 6 | adantll | ⊢ ( ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) → 𝐶 = 𝐹 ) |
| 8 | 5 7 | csbied | ⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑥 = 𝑋 ) → ⦋ 𝑌 / 𝑦 ⦌ 𝐶 = 𝐹 ) |
| 9 | 4 8 | csbied | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) → ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐶 = 𝐹 ) |
| 10 | 9 | eleq2d | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑆 ∈ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐶 ↔ 𝑆 ∈ 𝐹 ) ) |
| 11 | 2 | simprd | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → 𝐷 = 𝐺 ) |
| 12 | 11 | adantll | ⊢ ( ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) → 𝐷 = 𝐺 ) |
| 13 | 5 12 | csbied | ⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑥 = 𝑋 ) → ⦋ 𝑌 / 𝑦 ⦌ 𝐷 = 𝐺 ) |
| 14 | 4 13 | csbied | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) → ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐷 = 𝐺 ) |
| 15 | 14 | eleq2d | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑇 ∈ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐷 ↔ 𝑇 ∈ 𝐺 ) ) |
| 16 | 10 15 | anbi12d | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑆 ∈ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐶 ∧ 𝑇 ∈ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐷 ) ↔ ( 𝑆 ∈ 𝐹 ∧ 𝑇 ∈ 𝐺 ) ) ) |
| 17 | 16 | biimpd | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑆 ∈ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐶 ∧ 𝑇 ∈ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐷 ) → ( 𝑆 ∈ 𝐹 ∧ 𝑇 ∈ 𝐺 ) ) ) |
| 18 | 17 | imdistani | ⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑆 ∈ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐶 ∧ 𝑇 ∈ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐷 ) ) → ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑆 ∈ 𝐹 ∧ 𝑇 ∈ 𝐺 ) ) ) |
| 19 | 3 18 | syl6 | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉 ) → ( 𝑊 ∈ ( 𝑆 ( 𝑋 𝑂 𝑌 ) 𝑇 ) → ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑆 ∈ 𝐹 ∧ 𝑇 ∈ 𝐺 ) ) ) ) |