This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The eigenvalues of a Hermitian operator are real. Equation 1.30 of Hughes p. 49. (Contributed by NM, 19-Mar-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eighmre | ⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝐴 ∈ ( eigvec ‘ 𝑇 ) ) → ( ( eigval ‘ 𝑇 ) ‘ 𝐴 ) ∈ ℝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hmopf | ⊢ ( 𝑇 ∈ HrmOp → 𝑇 : ℋ ⟶ ℋ ) | |
| 2 | eleigveccl | ⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝐴 ∈ ( eigvec ‘ 𝑇 ) ) → 𝐴 ∈ ℋ ) | |
| 3 | eigvalcl | ⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝐴 ∈ ( eigvec ‘ 𝑇 ) ) → ( ( eigval ‘ 𝑇 ) ‘ 𝐴 ) ∈ ℂ ) | |
| 4 | 2 3 | jca | ⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝐴 ∈ ( eigvec ‘ 𝑇 ) ) → ( 𝐴 ∈ ℋ ∧ ( ( eigval ‘ 𝑇 ) ‘ 𝐴 ) ∈ ℂ ) ) |
| 5 | eigvec1 | ⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝐴 ∈ ( eigvec ‘ 𝑇 ) ) → ( ( 𝑇 ‘ 𝐴 ) = ( ( ( eigval ‘ 𝑇 ) ‘ 𝐴 ) ·ℎ 𝐴 ) ∧ 𝐴 ≠ 0ℎ ) ) | |
| 6 | 4 5 | jca | ⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝐴 ∈ ( eigvec ‘ 𝑇 ) ) → ( ( 𝐴 ∈ ℋ ∧ ( ( eigval ‘ 𝑇 ) ‘ 𝐴 ) ∈ ℂ ) ∧ ( ( 𝑇 ‘ 𝐴 ) = ( ( ( eigval ‘ 𝑇 ) ‘ 𝐴 ) ·ℎ 𝐴 ) ∧ 𝐴 ≠ 0ℎ ) ) ) |
| 7 | 1 6 | sylan | ⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝐴 ∈ ( eigvec ‘ 𝑇 ) ) → ( ( 𝐴 ∈ ℋ ∧ ( ( eigval ‘ 𝑇 ) ‘ 𝐴 ) ∈ ℂ ) ∧ ( ( 𝑇 ‘ 𝐴 ) = ( ( ( eigval ‘ 𝑇 ) ‘ 𝐴 ) ·ℎ 𝐴 ) ∧ 𝐴 ≠ 0ℎ ) ) ) |
| 8 | 2 2 | jca | ⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝐴 ∈ ( eigvec ‘ 𝑇 ) ) → ( 𝐴 ∈ ℋ ∧ 𝐴 ∈ ℋ ) ) |
| 9 | 1 8 | sylan | ⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝐴 ∈ ( eigvec ‘ 𝑇 ) ) → ( 𝐴 ∈ ℋ ∧ 𝐴 ∈ ℋ ) ) |
| 10 | hmop | ⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝐴 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) = ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐴 ) ) | |
| 11 | 10 | 3expb | ⊢ ( ( 𝑇 ∈ HrmOp ∧ ( 𝐴 ∈ ℋ ∧ 𝐴 ∈ ℋ ) ) → ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) = ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐴 ) ) |
| 12 | 9 11 | syldan | ⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝐴 ∈ ( eigvec ‘ 𝑇 ) ) → ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) = ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐴 ) ) |
| 13 | eigre | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ ( ( eigval ‘ 𝑇 ) ‘ 𝐴 ) ∈ ℂ ) ∧ ( ( 𝑇 ‘ 𝐴 ) = ( ( ( eigval ‘ 𝑇 ) ‘ 𝐴 ) ·ℎ 𝐴 ) ∧ 𝐴 ≠ 0ℎ ) ) → ( ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) = ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐴 ) ↔ ( ( eigval ‘ 𝑇 ) ‘ 𝐴 ) ∈ ℝ ) ) | |
| 14 | 13 | biimpa | ⊢ ( ( ( ( 𝐴 ∈ ℋ ∧ ( ( eigval ‘ 𝑇 ) ‘ 𝐴 ) ∈ ℂ ) ∧ ( ( 𝑇 ‘ 𝐴 ) = ( ( ( eigval ‘ 𝑇 ) ‘ 𝐴 ) ·ℎ 𝐴 ) ∧ 𝐴 ≠ 0ℎ ) ) ∧ ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) = ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐴 ) ) → ( ( eigval ‘ 𝑇 ) ‘ 𝐴 ) ∈ ℝ ) |
| 15 | 7 12 14 | syl2anc | ⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝐴 ∈ ( eigvec ‘ 𝑇 ) ) → ( ( eigval ‘ 𝑇 ) ‘ 𝐴 ) ∈ ℝ ) |