This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Eigenvectors of a Hermitian operator with distinct eigenvalues are orthogonal. Equation 1.31 of Hughes p. 49. (Contributed by NM, 23-Mar-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eighmorth | ⊢ ( ( ( 𝑇 ∈ HrmOp ∧ 𝐴 ∈ ( eigvec ‘ 𝑇 ) ) ∧ ( 𝐵 ∈ ( eigvec ‘ 𝑇 ) ∧ ( ( eigval ‘ 𝑇 ) ‘ 𝐴 ) ≠ ( ( eigval ‘ 𝑇 ) ‘ 𝐵 ) ) ) → ( 𝐴 ·ih 𝐵 ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hmopf | ⊢ ( 𝑇 ∈ HrmOp → 𝑇 : ℋ ⟶ ℋ ) | |
| 2 | eleigveccl | ⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝐴 ∈ ( eigvec ‘ 𝑇 ) ) → 𝐴 ∈ ℋ ) | |
| 3 | 1 2 | sylan | ⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝐴 ∈ ( eigvec ‘ 𝑇 ) ) → 𝐴 ∈ ℋ ) |
| 4 | 3 | adantr | ⊢ ( ( ( 𝑇 ∈ HrmOp ∧ 𝐴 ∈ ( eigvec ‘ 𝑇 ) ) ∧ 𝐵 ∈ ( eigvec ‘ 𝑇 ) ) → 𝐴 ∈ ℋ ) |
| 5 | eleigveccl | ⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝐵 ∈ ( eigvec ‘ 𝑇 ) ) → 𝐵 ∈ ℋ ) | |
| 6 | 1 5 | sylan | ⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝐵 ∈ ( eigvec ‘ 𝑇 ) ) → 𝐵 ∈ ℋ ) |
| 7 | 6 | adantlr | ⊢ ( ( ( 𝑇 ∈ HrmOp ∧ 𝐴 ∈ ( eigvec ‘ 𝑇 ) ) ∧ 𝐵 ∈ ( eigvec ‘ 𝑇 ) ) → 𝐵 ∈ ℋ ) |
| 8 | 4 7 | jca | ⊢ ( ( ( 𝑇 ∈ HrmOp ∧ 𝐴 ∈ ( eigvec ‘ 𝑇 ) ) ∧ 𝐵 ∈ ( eigvec ‘ 𝑇 ) ) → ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ) |
| 9 | eighmre | ⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝐴 ∈ ( eigvec ‘ 𝑇 ) ) → ( ( eigval ‘ 𝑇 ) ‘ 𝐴 ) ∈ ℝ ) | |
| 10 | 9 | recnd | ⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝐴 ∈ ( eigvec ‘ 𝑇 ) ) → ( ( eigval ‘ 𝑇 ) ‘ 𝐴 ) ∈ ℂ ) |
| 11 | 10 | adantr | ⊢ ( ( ( 𝑇 ∈ HrmOp ∧ 𝐴 ∈ ( eigvec ‘ 𝑇 ) ) ∧ 𝐵 ∈ ( eigvec ‘ 𝑇 ) ) → ( ( eigval ‘ 𝑇 ) ‘ 𝐴 ) ∈ ℂ ) |
| 12 | eighmre | ⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝐵 ∈ ( eigvec ‘ 𝑇 ) ) → ( ( eigval ‘ 𝑇 ) ‘ 𝐵 ) ∈ ℝ ) | |
| 13 | 12 | recnd | ⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝐵 ∈ ( eigvec ‘ 𝑇 ) ) → ( ( eigval ‘ 𝑇 ) ‘ 𝐵 ) ∈ ℂ ) |
| 14 | 13 | adantlr | ⊢ ( ( ( 𝑇 ∈ HrmOp ∧ 𝐴 ∈ ( eigvec ‘ 𝑇 ) ) ∧ 𝐵 ∈ ( eigvec ‘ 𝑇 ) ) → ( ( eigval ‘ 𝑇 ) ‘ 𝐵 ) ∈ ℂ ) |
| 15 | 11 14 | jca | ⊢ ( ( ( 𝑇 ∈ HrmOp ∧ 𝐴 ∈ ( eigvec ‘ 𝑇 ) ) ∧ 𝐵 ∈ ( eigvec ‘ 𝑇 ) ) → ( ( ( eigval ‘ 𝑇 ) ‘ 𝐴 ) ∈ ℂ ∧ ( ( eigval ‘ 𝑇 ) ‘ 𝐵 ) ∈ ℂ ) ) |
| 16 | 8 15 | jca | ⊢ ( ( ( 𝑇 ∈ HrmOp ∧ 𝐴 ∈ ( eigvec ‘ 𝑇 ) ) ∧ 𝐵 ∈ ( eigvec ‘ 𝑇 ) ) → ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ∧ ( ( ( eigval ‘ 𝑇 ) ‘ 𝐴 ) ∈ ℂ ∧ ( ( eigval ‘ 𝑇 ) ‘ 𝐵 ) ∈ ℂ ) ) ) |
| 17 | 16 | adantrr | ⊢ ( ( ( 𝑇 ∈ HrmOp ∧ 𝐴 ∈ ( eigvec ‘ 𝑇 ) ) ∧ ( 𝐵 ∈ ( eigvec ‘ 𝑇 ) ∧ ( ( eigval ‘ 𝑇 ) ‘ 𝐴 ) ≠ ( ( eigval ‘ 𝑇 ) ‘ 𝐵 ) ) ) → ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ∧ ( ( ( eigval ‘ 𝑇 ) ‘ 𝐴 ) ∈ ℂ ∧ ( ( eigval ‘ 𝑇 ) ‘ 𝐵 ) ∈ ℂ ) ) ) |
| 18 | eigvec1 | ⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝐴 ∈ ( eigvec ‘ 𝑇 ) ) → ( ( 𝑇 ‘ 𝐴 ) = ( ( ( eigval ‘ 𝑇 ) ‘ 𝐴 ) ·ℎ 𝐴 ) ∧ 𝐴 ≠ 0ℎ ) ) | |
| 19 | 18 | simpld | ⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝐴 ∈ ( eigvec ‘ 𝑇 ) ) → ( 𝑇 ‘ 𝐴 ) = ( ( ( eigval ‘ 𝑇 ) ‘ 𝐴 ) ·ℎ 𝐴 ) ) |
| 20 | 1 19 | sylan | ⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝐴 ∈ ( eigvec ‘ 𝑇 ) ) → ( 𝑇 ‘ 𝐴 ) = ( ( ( eigval ‘ 𝑇 ) ‘ 𝐴 ) ·ℎ 𝐴 ) ) |
| 21 | 20 | adantr | ⊢ ( ( ( 𝑇 ∈ HrmOp ∧ 𝐴 ∈ ( eigvec ‘ 𝑇 ) ) ∧ 𝐵 ∈ ( eigvec ‘ 𝑇 ) ) → ( 𝑇 ‘ 𝐴 ) = ( ( ( eigval ‘ 𝑇 ) ‘ 𝐴 ) ·ℎ 𝐴 ) ) |
| 22 | eigvec1 | ⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝐵 ∈ ( eigvec ‘ 𝑇 ) ) → ( ( 𝑇 ‘ 𝐵 ) = ( ( ( eigval ‘ 𝑇 ) ‘ 𝐵 ) ·ℎ 𝐵 ) ∧ 𝐵 ≠ 0ℎ ) ) | |
| 23 | 22 | simpld | ⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝐵 ∈ ( eigvec ‘ 𝑇 ) ) → ( 𝑇 ‘ 𝐵 ) = ( ( ( eigval ‘ 𝑇 ) ‘ 𝐵 ) ·ℎ 𝐵 ) ) |
| 24 | 1 23 | sylan | ⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝐵 ∈ ( eigvec ‘ 𝑇 ) ) → ( 𝑇 ‘ 𝐵 ) = ( ( ( eigval ‘ 𝑇 ) ‘ 𝐵 ) ·ℎ 𝐵 ) ) |
| 25 | 24 | adantlr | ⊢ ( ( ( 𝑇 ∈ HrmOp ∧ 𝐴 ∈ ( eigvec ‘ 𝑇 ) ) ∧ 𝐵 ∈ ( eigvec ‘ 𝑇 ) ) → ( 𝑇 ‘ 𝐵 ) = ( ( ( eigval ‘ 𝑇 ) ‘ 𝐵 ) ·ℎ 𝐵 ) ) |
| 26 | 21 25 | jca | ⊢ ( ( ( 𝑇 ∈ HrmOp ∧ 𝐴 ∈ ( eigvec ‘ 𝑇 ) ) ∧ 𝐵 ∈ ( eigvec ‘ 𝑇 ) ) → ( ( 𝑇 ‘ 𝐴 ) = ( ( ( eigval ‘ 𝑇 ) ‘ 𝐴 ) ·ℎ 𝐴 ) ∧ ( 𝑇 ‘ 𝐵 ) = ( ( ( eigval ‘ 𝑇 ) ‘ 𝐵 ) ·ℎ 𝐵 ) ) ) |
| 27 | 26 | adantrr | ⊢ ( ( ( 𝑇 ∈ HrmOp ∧ 𝐴 ∈ ( eigvec ‘ 𝑇 ) ) ∧ ( 𝐵 ∈ ( eigvec ‘ 𝑇 ) ∧ ( ( eigval ‘ 𝑇 ) ‘ 𝐴 ) ≠ ( ( eigval ‘ 𝑇 ) ‘ 𝐵 ) ) ) → ( ( 𝑇 ‘ 𝐴 ) = ( ( ( eigval ‘ 𝑇 ) ‘ 𝐴 ) ·ℎ 𝐴 ) ∧ ( 𝑇 ‘ 𝐵 ) = ( ( ( eigval ‘ 𝑇 ) ‘ 𝐵 ) ·ℎ 𝐵 ) ) ) |
| 28 | 12 | cjred | ⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝐵 ∈ ( eigvec ‘ 𝑇 ) ) → ( ∗ ‘ ( ( eigval ‘ 𝑇 ) ‘ 𝐵 ) ) = ( ( eigval ‘ 𝑇 ) ‘ 𝐵 ) ) |
| 29 | 28 | neeq2d | ⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝐵 ∈ ( eigvec ‘ 𝑇 ) ) → ( ( ( eigval ‘ 𝑇 ) ‘ 𝐴 ) ≠ ( ∗ ‘ ( ( eigval ‘ 𝑇 ) ‘ 𝐵 ) ) ↔ ( ( eigval ‘ 𝑇 ) ‘ 𝐴 ) ≠ ( ( eigval ‘ 𝑇 ) ‘ 𝐵 ) ) ) |
| 30 | 29 | biimpar | ⊢ ( ( ( 𝑇 ∈ HrmOp ∧ 𝐵 ∈ ( eigvec ‘ 𝑇 ) ) ∧ ( ( eigval ‘ 𝑇 ) ‘ 𝐴 ) ≠ ( ( eigval ‘ 𝑇 ) ‘ 𝐵 ) ) → ( ( eigval ‘ 𝑇 ) ‘ 𝐴 ) ≠ ( ∗ ‘ ( ( eigval ‘ 𝑇 ) ‘ 𝐵 ) ) ) |
| 31 | 30 | anasss | ⊢ ( ( 𝑇 ∈ HrmOp ∧ ( 𝐵 ∈ ( eigvec ‘ 𝑇 ) ∧ ( ( eigval ‘ 𝑇 ) ‘ 𝐴 ) ≠ ( ( eigval ‘ 𝑇 ) ‘ 𝐵 ) ) ) → ( ( eigval ‘ 𝑇 ) ‘ 𝐴 ) ≠ ( ∗ ‘ ( ( eigval ‘ 𝑇 ) ‘ 𝐵 ) ) ) |
| 32 | 31 | adantlr | ⊢ ( ( ( 𝑇 ∈ HrmOp ∧ 𝐴 ∈ ( eigvec ‘ 𝑇 ) ) ∧ ( 𝐵 ∈ ( eigvec ‘ 𝑇 ) ∧ ( ( eigval ‘ 𝑇 ) ‘ 𝐴 ) ≠ ( ( eigval ‘ 𝑇 ) ‘ 𝐵 ) ) ) → ( ( eigval ‘ 𝑇 ) ‘ 𝐴 ) ≠ ( ∗ ‘ ( ( eigval ‘ 𝑇 ) ‘ 𝐵 ) ) ) |
| 33 | 27 32 | jca | ⊢ ( ( ( 𝑇 ∈ HrmOp ∧ 𝐴 ∈ ( eigvec ‘ 𝑇 ) ) ∧ ( 𝐵 ∈ ( eigvec ‘ 𝑇 ) ∧ ( ( eigval ‘ 𝑇 ) ‘ 𝐴 ) ≠ ( ( eigval ‘ 𝑇 ) ‘ 𝐵 ) ) ) → ( ( ( 𝑇 ‘ 𝐴 ) = ( ( ( eigval ‘ 𝑇 ) ‘ 𝐴 ) ·ℎ 𝐴 ) ∧ ( 𝑇 ‘ 𝐵 ) = ( ( ( eigval ‘ 𝑇 ) ‘ 𝐵 ) ·ℎ 𝐵 ) ) ∧ ( ( eigval ‘ 𝑇 ) ‘ 𝐴 ) ≠ ( ∗ ‘ ( ( eigval ‘ 𝑇 ) ‘ 𝐵 ) ) ) ) |
| 34 | simpll | ⊢ ( ( ( 𝑇 ∈ HrmOp ∧ 𝐴 ∈ ( eigvec ‘ 𝑇 ) ) ∧ 𝐵 ∈ ( eigvec ‘ 𝑇 ) ) → 𝑇 ∈ HrmOp ) | |
| 35 | hmop | ⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 ·ih ( 𝑇 ‘ 𝐵 ) ) = ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐵 ) ) | |
| 36 | 34 4 7 35 | syl3anc | ⊢ ( ( ( 𝑇 ∈ HrmOp ∧ 𝐴 ∈ ( eigvec ‘ 𝑇 ) ) ∧ 𝐵 ∈ ( eigvec ‘ 𝑇 ) ) → ( 𝐴 ·ih ( 𝑇 ‘ 𝐵 ) ) = ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐵 ) ) |
| 37 | 36 | adantrr | ⊢ ( ( ( 𝑇 ∈ HrmOp ∧ 𝐴 ∈ ( eigvec ‘ 𝑇 ) ) ∧ ( 𝐵 ∈ ( eigvec ‘ 𝑇 ) ∧ ( ( eigval ‘ 𝑇 ) ‘ 𝐴 ) ≠ ( ( eigval ‘ 𝑇 ) ‘ 𝐵 ) ) ) → ( 𝐴 ·ih ( 𝑇 ‘ 𝐵 ) ) = ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐵 ) ) |
| 38 | eigorth | ⊢ ( ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ∧ ( ( ( eigval ‘ 𝑇 ) ‘ 𝐴 ) ∈ ℂ ∧ ( ( eigval ‘ 𝑇 ) ‘ 𝐵 ) ∈ ℂ ) ) ∧ ( ( ( 𝑇 ‘ 𝐴 ) = ( ( ( eigval ‘ 𝑇 ) ‘ 𝐴 ) ·ℎ 𝐴 ) ∧ ( 𝑇 ‘ 𝐵 ) = ( ( ( eigval ‘ 𝑇 ) ‘ 𝐵 ) ·ℎ 𝐵 ) ) ∧ ( ( eigval ‘ 𝑇 ) ‘ 𝐴 ) ≠ ( ∗ ‘ ( ( eigval ‘ 𝑇 ) ‘ 𝐵 ) ) ) ) → ( ( 𝐴 ·ih ( 𝑇 ‘ 𝐵 ) ) = ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐵 ) ↔ ( 𝐴 ·ih 𝐵 ) = 0 ) ) | |
| 39 | 38 | biimpa | ⊢ ( ( ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ∧ ( ( ( eigval ‘ 𝑇 ) ‘ 𝐴 ) ∈ ℂ ∧ ( ( eigval ‘ 𝑇 ) ‘ 𝐵 ) ∈ ℂ ) ) ∧ ( ( ( 𝑇 ‘ 𝐴 ) = ( ( ( eigval ‘ 𝑇 ) ‘ 𝐴 ) ·ℎ 𝐴 ) ∧ ( 𝑇 ‘ 𝐵 ) = ( ( ( eigval ‘ 𝑇 ) ‘ 𝐵 ) ·ℎ 𝐵 ) ) ∧ ( ( eigval ‘ 𝑇 ) ‘ 𝐴 ) ≠ ( ∗ ‘ ( ( eigval ‘ 𝑇 ) ‘ 𝐵 ) ) ) ) ∧ ( 𝐴 ·ih ( 𝑇 ‘ 𝐵 ) ) = ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐵 ) ) → ( 𝐴 ·ih 𝐵 ) = 0 ) |
| 40 | 17 33 37 39 | syl21anc | ⊢ ( ( ( 𝑇 ∈ HrmOp ∧ 𝐴 ∈ ( eigvec ‘ 𝑇 ) ) ∧ ( 𝐵 ∈ ( eigvec ‘ 𝑇 ) ∧ ( ( eigval ‘ 𝑇 ) ‘ 𝐴 ) ≠ ( ( eigval ‘ 𝑇 ) ‘ 𝐵 ) ) ) → ( 𝐴 ·ih 𝐵 ) = 0 ) |