This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An eigenvalue is a complex number. (Contributed by NM, 11-Mar-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eigvalcl | ⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝐴 ∈ ( eigvec ‘ 𝑇 ) ) → ( ( eigval ‘ 𝑇 ) ‘ 𝐴 ) ∈ ℂ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eigvalval | ⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝐴 ∈ ( eigvec ‘ 𝑇 ) ) → ( ( eigval ‘ 𝑇 ) ‘ 𝐴 ) = ( ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐴 ) / ( ( normℎ ‘ 𝐴 ) ↑ 2 ) ) ) | |
| 2 | eleigveccl | ⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝐴 ∈ ( eigvec ‘ 𝑇 ) ) → 𝐴 ∈ ℋ ) | |
| 3 | ffvelcdm | ⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝐴 ∈ ℋ ) → ( 𝑇 ‘ 𝐴 ) ∈ ℋ ) | |
| 4 | hicl | ⊢ ( ( ( 𝑇 ‘ 𝐴 ) ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐴 ) ∈ ℂ ) | |
| 5 | 3 4 | sylancom | ⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝐴 ∈ ℋ ) → ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐴 ) ∈ ℂ ) |
| 6 | 2 5 | syldan | ⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝐴 ∈ ( eigvec ‘ 𝑇 ) ) → ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐴 ) ∈ ℂ ) |
| 7 | normcl | ⊢ ( 𝐴 ∈ ℋ → ( normℎ ‘ 𝐴 ) ∈ ℝ ) | |
| 8 | 7 | recnd | ⊢ ( 𝐴 ∈ ℋ → ( normℎ ‘ 𝐴 ) ∈ ℂ ) |
| 9 | 2 8 | syl | ⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝐴 ∈ ( eigvec ‘ 𝑇 ) ) → ( normℎ ‘ 𝐴 ) ∈ ℂ ) |
| 10 | 9 | sqcld | ⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝐴 ∈ ( eigvec ‘ 𝑇 ) ) → ( ( normℎ ‘ 𝐴 ) ↑ 2 ) ∈ ℂ ) |
| 11 | eleigvec | ⊢ ( 𝑇 : ℋ ⟶ ℋ → ( 𝐴 ∈ ( eigvec ‘ 𝑇 ) ↔ ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ∧ ∃ 𝑥 ∈ ℂ ( 𝑇 ‘ 𝐴 ) = ( 𝑥 ·ℎ 𝐴 ) ) ) ) | |
| 12 | 11 | biimpa | ⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝐴 ∈ ( eigvec ‘ 𝑇 ) ) → ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ∧ ∃ 𝑥 ∈ ℂ ( 𝑇 ‘ 𝐴 ) = ( 𝑥 ·ℎ 𝐴 ) ) ) |
| 13 | sqne0 | ⊢ ( ( normℎ ‘ 𝐴 ) ∈ ℂ → ( ( ( normℎ ‘ 𝐴 ) ↑ 2 ) ≠ 0 ↔ ( normℎ ‘ 𝐴 ) ≠ 0 ) ) | |
| 14 | 8 13 | syl | ⊢ ( 𝐴 ∈ ℋ → ( ( ( normℎ ‘ 𝐴 ) ↑ 2 ) ≠ 0 ↔ ( normℎ ‘ 𝐴 ) ≠ 0 ) ) |
| 15 | normne0 | ⊢ ( 𝐴 ∈ ℋ → ( ( normℎ ‘ 𝐴 ) ≠ 0 ↔ 𝐴 ≠ 0ℎ ) ) | |
| 16 | 14 15 | bitr2d | ⊢ ( 𝐴 ∈ ℋ → ( 𝐴 ≠ 0ℎ ↔ ( ( normℎ ‘ 𝐴 ) ↑ 2 ) ≠ 0 ) ) |
| 17 | 16 | biimpa | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( ( normℎ ‘ 𝐴 ) ↑ 2 ) ≠ 0 ) |
| 18 | 17 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ∧ ∃ 𝑥 ∈ ℂ ( 𝑇 ‘ 𝐴 ) = ( 𝑥 ·ℎ 𝐴 ) ) → ( ( normℎ ‘ 𝐴 ) ↑ 2 ) ≠ 0 ) |
| 19 | 12 18 | syl | ⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝐴 ∈ ( eigvec ‘ 𝑇 ) ) → ( ( normℎ ‘ 𝐴 ) ↑ 2 ) ≠ 0 ) |
| 20 | 6 10 19 | divcld | ⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝐴 ∈ ( eigvec ‘ 𝑇 ) ) → ( ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐴 ) / ( ( normℎ ‘ 𝐴 ) ↑ 2 ) ) ∈ ℂ ) |
| 21 | 1 20 | eqeltrd | ⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝐴 ∈ ( eigvec ‘ 𝑇 ) ) → ( ( eigval ‘ 𝑇 ) ‘ 𝐴 ) ∈ ℂ ) |