This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The eigenvalues of a Hermitian operator are real. Equation 1.30 of Hughes p. 49. (Contributed by NM, 19-Mar-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eighmre | |- ( ( T e. HrmOp /\ A e. ( eigvec ` T ) ) -> ( ( eigval ` T ) ` A ) e. RR ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hmopf | |- ( T e. HrmOp -> T : ~H --> ~H ) |
|
| 2 | eleigveccl | |- ( ( T : ~H --> ~H /\ A e. ( eigvec ` T ) ) -> A e. ~H ) |
|
| 3 | eigvalcl | |- ( ( T : ~H --> ~H /\ A e. ( eigvec ` T ) ) -> ( ( eigval ` T ) ` A ) e. CC ) |
|
| 4 | 2 3 | jca | |- ( ( T : ~H --> ~H /\ A e. ( eigvec ` T ) ) -> ( A e. ~H /\ ( ( eigval ` T ) ` A ) e. CC ) ) |
| 5 | eigvec1 | |- ( ( T : ~H --> ~H /\ A e. ( eigvec ` T ) ) -> ( ( T ` A ) = ( ( ( eigval ` T ) ` A ) .h A ) /\ A =/= 0h ) ) |
|
| 6 | 4 5 | jca | |- ( ( T : ~H --> ~H /\ A e. ( eigvec ` T ) ) -> ( ( A e. ~H /\ ( ( eigval ` T ) ` A ) e. CC ) /\ ( ( T ` A ) = ( ( ( eigval ` T ) ` A ) .h A ) /\ A =/= 0h ) ) ) |
| 7 | 1 6 | sylan | |- ( ( T e. HrmOp /\ A e. ( eigvec ` T ) ) -> ( ( A e. ~H /\ ( ( eigval ` T ) ` A ) e. CC ) /\ ( ( T ` A ) = ( ( ( eigval ` T ) ` A ) .h A ) /\ A =/= 0h ) ) ) |
| 8 | 2 2 | jca | |- ( ( T : ~H --> ~H /\ A e. ( eigvec ` T ) ) -> ( A e. ~H /\ A e. ~H ) ) |
| 9 | 1 8 | sylan | |- ( ( T e. HrmOp /\ A e. ( eigvec ` T ) ) -> ( A e. ~H /\ A e. ~H ) ) |
| 10 | hmop | |- ( ( T e. HrmOp /\ A e. ~H /\ A e. ~H ) -> ( A .ih ( T ` A ) ) = ( ( T ` A ) .ih A ) ) |
|
| 11 | 10 | 3expb | |- ( ( T e. HrmOp /\ ( A e. ~H /\ A e. ~H ) ) -> ( A .ih ( T ` A ) ) = ( ( T ` A ) .ih A ) ) |
| 12 | 9 11 | syldan | |- ( ( T e. HrmOp /\ A e. ( eigvec ` T ) ) -> ( A .ih ( T ` A ) ) = ( ( T ` A ) .ih A ) ) |
| 13 | eigre | |- ( ( ( A e. ~H /\ ( ( eigval ` T ) ` A ) e. CC ) /\ ( ( T ` A ) = ( ( ( eigval ` T ) ` A ) .h A ) /\ A =/= 0h ) ) -> ( ( A .ih ( T ` A ) ) = ( ( T ` A ) .ih A ) <-> ( ( eigval ` T ) ` A ) e. RR ) ) |
|
| 14 | 13 | biimpa | |- ( ( ( ( A e. ~H /\ ( ( eigval ` T ) ` A ) e. CC ) /\ ( ( T ` A ) = ( ( ( eigval ` T ) ` A ) .h A ) /\ A =/= 0h ) ) /\ ( A .ih ( T ` A ) ) = ( ( T ` A ) .ih A ) ) -> ( ( eigval ` T ) ` A ) e. RR ) |
| 15 | 7 12 14 | syl2anc | |- ( ( T e. HrmOp /\ A e. ( eigvec ` T ) ) -> ( ( eigval ` T ) ` A ) e. RR ) |