This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A necessary and sufficient condition (that holds when T is a Hermitian operator) for an eigenvalue B to be real. Generalization of Equation 1.30 of Hughes p. 49. (Contributed by NM, 19-Mar-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eigre | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ) ∧ ( ( 𝑇 ‘ 𝐴 ) = ( 𝐵 ·ℎ 𝐴 ) ∧ 𝐴 ≠ 0ℎ ) ) → ( ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) = ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐴 ) ↔ 𝐵 ∈ ℝ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( 𝑇 ‘ 𝐴 ) = ( 𝑇 ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) | |
| 2 | oveq2 | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( 𝐵 ·ℎ 𝐴 ) = ( 𝐵 ·ℎ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) | |
| 3 | 1 2 | eqeq12d | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( ( 𝑇 ‘ 𝐴 ) = ( 𝐵 ·ℎ 𝐴 ) ↔ ( 𝑇 ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) = ( 𝐵 ·ℎ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) ) |
| 4 | neeq1 | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( 𝐴 ≠ 0ℎ ↔ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ≠ 0ℎ ) ) | |
| 5 | 3 4 | anbi12d | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( ( ( 𝑇 ‘ 𝐴 ) = ( 𝐵 ·ℎ 𝐴 ) ∧ 𝐴 ≠ 0ℎ ) ↔ ( ( 𝑇 ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) = ( 𝐵 ·ℎ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ∧ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ≠ 0ℎ ) ) ) |
| 6 | id | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) | |
| 7 | 6 1 | oveq12d | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) = ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ·ih ( 𝑇 ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) ) |
| 8 | 1 6 | oveq12d | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐴 ) = ( ( 𝑇 ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ·ih if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) |
| 9 | 7 8 | eqeq12d | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) = ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐴 ) ↔ ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ·ih ( 𝑇 ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) = ( ( 𝑇 ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ·ih if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) ) |
| 10 | 9 | bibi1d | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( ( ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) = ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐴 ) ↔ 𝐵 ∈ ℝ ) ↔ ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ·ih ( 𝑇 ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) = ( ( 𝑇 ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ·ih if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ↔ 𝐵 ∈ ℝ ) ) ) |
| 11 | 5 10 | imbi12d | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( ( ( ( 𝑇 ‘ 𝐴 ) = ( 𝐵 ·ℎ 𝐴 ) ∧ 𝐴 ≠ 0ℎ ) → ( ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) = ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐴 ) ↔ 𝐵 ∈ ℝ ) ) ↔ ( ( ( 𝑇 ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) = ( 𝐵 ·ℎ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ∧ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ≠ 0ℎ ) → ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ·ih ( 𝑇 ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) = ( ( 𝑇 ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ·ih if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ↔ 𝐵 ∈ ℝ ) ) ) ) |
| 12 | oveq1 | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) → ( 𝐵 ·ℎ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) = ( if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ·ℎ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) | |
| 13 | 12 | eqeq2d | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) → ( ( 𝑇 ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) = ( 𝐵 ·ℎ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ↔ ( 𝑇 ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) = ( if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ·ℎ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) ) |
| 14 | 13 | anbi1d | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) → ( ( ( 𝑇 ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) = ( 𝐵 ·ℎ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ∧ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ≠ 0ℎ ) ↔ ( ( 𝑇 ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) = ( if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ·ℎ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ∧ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ≠ 0ℎ ) ) ) |
| 15 | eleq1 | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) → ( 𝐵 ∈ ℝ ↔ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ∈ ℝ ) ) | |
| 16 | 15 | bibi2d | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) → ( ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ·ih ( 𝑇 ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) = ( ( 𝑇 ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ·ih if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ↔ 𝐵 ∈ ℝ ) ↔ ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ·ih ( 𝑇 ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) = ( ( 𝑇 ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ·ih if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ↔ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ∈ ℝ ) ) ) |
| 17 | 14 16 | imbi12d | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) → ( ( ( ( 𝑇 ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) = ( 𝐵 ·ℎ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ∧ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ≠ 0ℎ ) → ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ·ih ( 𝑇 ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) = ( ( 𝑇 ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ·ih if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ↔ 𝐵 ∈ ℝ ) ) ↔ ( ( ( 𝑇 ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) = ( if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ·ℎ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ∧ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ≠ 0ℎ ) → ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ·ih ( 𝑇 ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) = ( ( 𝑇 ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ·ih if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ↔ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ∈ ℝ ) ) ) ) |
| 18 | ifhvhv0 | ⊢ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ∈ ℋ | |
| 19 | 0cn | ⊢ 0 ∈ ℂ | |
| 20 | 19 | elimel | ⊢ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ∈ ℂ |
| 21 | 18 20 | eigrei | ⊢ ( ( ( 𝑇 ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) = ( if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ·ℎ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ∧ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ≠ 0ℎ ) → ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ·ih ( 𝑇 ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) = ( ( 𝑇 ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ·ih if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ↔ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ∈ ℝ ) ) |
| 22 | 11 17 21 | dedth2h | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ) → ( ( ( 𝑇 ‘ 𝐴 ) = ( 𝐵 ·ℎ 𝐴 ) ∧ 𝐴 ≠ 0ℎ ) → ( ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) = ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐴 ) ↔ 𝐵 ∈ ℝ ) ) ) |
| 23 | 22 | imp | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ) ∧ ( ( 𝑇 ‘ 𝐴 ) = ( 𝐵 ·ℎ 𝐴 ) ∧ 𝐴 ≠ 0ℎ ) ) → ( ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) = ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐴 ) ↔ 𝐵 ∈ ℝ ) ) |