This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property of an eigenvector. (Contributed by NM, 12-Mar-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eigvec1 | ⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝐴 ∈ ( eigvec ‘ 𝑇 ) ) → ( ( 𝑇 ‘ 𝐴 ) = ( ( ( eigval ‘ 𝑇 ) ‘ 𝐴 ) ·ℎ 𝐴 ) ∧ 𝐴 ≠ 0ℎ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eigvalval | ⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝐴 ∈ ( eigvec ‘ 𝑇 ) ) → ( ( eigval ‘ 𝑇 ) ‘ 𝐴 ) = ( ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐴 ) / ( ( normℎ ‘ 𝐴 ) ↑ 2 ) ) ) | |
| 2 | 1 | oveq1d | ⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝐴 ∈ ( eigvec ‘ 𝑇 ) ) → ( ( ( eigval ‘ 𝑇 ) ‘ 𝐴 ) ·ℎ 𝐴 ) = ( ( ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐴 ) / ( ( normℎ ‘ 𝐴 ) ↑ 2 ) ) ·ℎ 𝐴 ) ) |
| 3 | eleigvec2 | ⊢ ( 𝑇 : ℋ ⟶ ℋ → ( 𝐴 ∈ ( eigvec ‘ 𝑇 ) ↔ ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ∧ ( 𝑇 ‘ 𝐴 ) ∈ ( span ‘ { 𝐴 } ) ) ) ) | |
| 4 | 3 | biimpa | ⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝐴 ∈ ( eigvec ‘ 𝑇 ) ) → ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ∧ ( 𝑇 ‘ 𝐴 ) ∈ ( span ‘ { 𝐴 } ) ) ) |
| 5 | normcan | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ∧ ( 𝑇 ‘ 𝐴 ) ∈ ( span ‘ { 𝐴 } ) ) → ( ( ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐴 ) / ( ( normℎ ‘ 𝐴 ) ↑ 2 ) ) ·ℎ 𝐴 ) = ( 𝑇 ‘ 𝐴 ) ) | |
| 6 | 4 5 | syl | ⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝐴 ∈ ( eigvec ‘ 𝑇 ) ) → ( ( ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐴 ) / ( ( normℎ ‘ 𝐴 ) ↑ 2 ) ) ·ℎ 𝐴 ) = ( 𝑇 ‘ 𝐴 ) ) |
| 7 | 2 6 | eqtr2d | ⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝐴 ∈ ( eigvec ‘ 𝑇 ) ) → ( 𝑇 ‘ 𝐴 ) = ( ( ( eigval ‘ 𝑇 ) ‘ 𝐴 ) ·ℎ 𝐴 ) ) |
| 8 | 4 | simp2d | ⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝐴 ∈ ( eigvec ‘ 𝑇 ) ) → 𝐴 ≠ 0ℎ ) |
| 9 | 7 8 | jca | ⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝐴 ∈ ( eigvec ‘ 𝑇 ) ) → ( ( 𝑇 ‘ 𝐴 ) = ( ( ( eigval ‘ 𝑇 ) ‘ 𝐴 ) ·ℎ 𝐴 ) ∧ 𝐴 ≠ 0ℎ ) ) |