This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The monoid of endofunctions on a class A is a semigroup. (Contributed by AV, 28-Jan-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | efmndmgm.g | ⊢ 𝐺 = ( EndoFMnd ‘ 𝐴 ) | |
| Assertion | efmndsgrp | ⊢ 𝐺 ∈ Smgrp |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efmndmgm.g | ⊢ 𝐺 = ( EndoFMnd ‘ 𝐴 ) | |
| 2 | 1 | efmndmgm | ⊢ 𝐺 ∈ Mgm |
| 3 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 4 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 5 | 1 3 4 | efmndcl | ⊢ ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ ( Base ‘ 𝐺 ) ) |
| 6 | 1 3 4 | efmndov | ⊢ ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑥 ∘ 𝑦 ) ) |
| 7 | 5 6 | symggrplem | ⊢ ( ( 𝑓 ∈ ( Base ‘ 𝐺 ) ∧ 𝑔 ∈ ( Base ‘ 𝐺 ) ∧ ℎ ∈ ( Base ‘ 𝐺 ) ) → ( ( 𝑓 ( +g ‘ 𝐺 ) 𝑔 ) ( +g ‘ 𝐺 ) ℎ ) = ( 𝑓 ( +g ‘ 𝐺 ) ( 𝑔 ( +g ‘ 𝐺 ) ℎ ) ) ) |
| 8 | 7 | rgen3 | ⊢ ∀ 𝑓 ∈ ( Base ‘ 𝐺 ) ∀ 𝑔 ∈ ( Base ‘ 𝐺 ) ∀ ℎ ∈ ( Base ‘ 𝐺 ) ( ( 𝑓 ( +g ‘ 𝐺 ) 𝑔 ) ( +g ‘ 𝐺 ) ℎ ) = ( 𝑓 ( +g ‘ 𝐺 ) ( 𝑔 ( +g ‘ 𝐺 ) ℎ ) ) |
| 9 | 3 4 | issgrp | ⊢ ( 𝐺 ∈ Smgrp ↔ ( 𝐺 ∈ Mgm ∧ ∀ 𝑓 ∈ ( Base ‘ 𝐺 ) ∀ 𝑔 ∈ ( Base ‘ 𝐺 ) ∀ ℎ ∈ ( Base ‘ 𝐺 ) ( ( 𝑓 ( +g ‘ 𝐺 ) 𝑔 ) ( +g ‘ 𝐺 ) ℎ ) = ( 𝑓 ( +g ‘ 𝐺 ) ( 𝑔 ( +g ‘ 𝐺 ) ℎ ) ) ) ) |
| 10 | 2 8 9 | mpbir2an | ⊢ 𝐺 ∈ Smgrp |