This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for efif1o . (Contributed by Mario Carneiro, 13-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | efif1olem1.1 | ⊢ 𝐷 = ( 𝐴 (,] ( 𝐴 + ( 2 · π ) ) ) | |
| Assertion | efif1olem1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) → ( abs ‘ ( 𝑥 − 𝑦 ) ) < ( 2 · π ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efif1olem1.1 | ⊢ 𝐷 = ( 𝐴 (,] ( 𝐴 + ( 2 · π ) ) ) | |
| 2 | simprr | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) → 𝑦 ∈ 𝐷 ) | |
| 3 | 2 1 | eleqtrdi | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) → 𝑦 ∈ ( 𝐴 (,] ( 𝐴 + ( 2 · π ) ) ) ) |
| 4 | rexr | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ* ) | |
| 5 | simpl | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) → 𝐴 ∈ ℝ ) | |
| 6 | 2re | ⊢ 2 ∈ ℝ | |
| 7 | pire | ⊢ π ∈ ℝ | |
| 8 | 6 7 | remulcli | ⊢ ( 2 · π ) ∈ ℝ |
| 9 | readdcl | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 2 · π ) ∈ ℝ ) → ( 𝐴 + ( 2 · π ) ) ∈ ℝ ) | |
| 10 | 5 8 9 | sylancl | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) → ( 𝐴 + ( 2 · π ) ) ∈ ℝ ) |
| 11 | elioc2 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ ( 𝐴 + ( 2 · π ) ) ∈ ℝ ) → ( 𝑦 ∈ ( 𝐴 (,] ( 𝐴 + ( 2 · π ) ) ) ↔ ( 𝑦 ∈ ℝ ∧ 𝐴 < 𝑦 ∧ 𝑦 ≤ ( 𝐴 + ( 2 · π ) ) ) ) ) | |
| 12 | 4 10 11 | syl2an2r | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) → ( 𝑦 ∈ ( 𝐴 (,] ( 𝐴 + ( 2 · π ) ) ) ↔ ( 𝑦 ∈ ℝ ∧ 𝐴 < 𝑦 ∧ 𝑦 ≤ ( 𝐴 + ( 2 · π ) ) ) ) ) |
| 13 | 3 12 | mpbid | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) → ( 𝑦 ∈ ℝ ∧ 𝐴 < 𝑦 ∧ 𝑦 ≤ ( 𝐴 + ( 2 · π ) ) ) ) |
| 14 | 13 | simp1d | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) → 𝑦 ∈ ℝ ) |
| 15 | simprl | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) → 𝑥 ∈ 𝐷 ) | |
| 16 | 15 1 | eleqtrdi | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) → 𝑥 ∈ ( 𝐴 (,] ( 𝐴 + ( 2 · π ) ) ) ) |
| 17 | elioc2 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ ( 𝐴 + ( 2 · π ) ) ∈ ℝ ) → ( 𝑥 ∈ ( 𝐴 (,] ( 𝐴 + ( 2 · π ) ) ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐴 < 𝑥 ∧ 𝑥 ≤ ( 𝐴 + ( 2 · π ) ) ) ) ) | |
| 18 | 4 10 17 | syl2an2r | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) → ( 𝑥 ∈ ( 𝐴 (,] ( 𝐴 + ( 2 · π ) ) ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐴 < 𝑥 ∧ 𝑥 ≤ ( 𝐴 + ( 2 · π ) ) ) ) ) |
| 19 | 16 18 | mpbid | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) → ( 𝑥 ∈ ℝ ∧ 𝐴 < 𝑥 ∧ 𝑥 ≤ ( 𝐴 + ( 2 · π ) ) ) ) |
| 20 | 19 | simp1d | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) → 𝑥 ∈ ℝ ) |
| 21 | readdcl | ⊢ ( ( 𝑥 ∈ ℝ ∧ ( 2 · π ) ∈ ℝ ) → ( 𝑥 + ( 2 · π ) ) ∈ ℝ ) | |
| 22 | 20 8 21 | sylancl | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) → ( 𝑥 + ( 2 · π ) ) ∈ ℝ ) |
| 23 | 13 | simp3d | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) → 𝑦 ≤ ( 𝐴 + ( 2 · π ) ) ) |
| 24 | 8 | a1i | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) → ( 2 · π ) ∈ ℝ ) |
| 25 | 19 | simp2d | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) → 𝐴 < 𝑥 ) |
| 26 | 5 20 24 25 | ltadd1dd | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) → ( 𝐴 + ( 2 · π ) ) < ( 𝑥 + ( 2 · π ) ) ) |
| 27 | 14 10 22 23 26 | lelttrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) → 𝑦 < ( 𝑥 + ( 2 · π ) ) ) |
| 28 | 14 24 20 | ltsubaddd | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) → ( ( 𝑦 − ( 2 · π ) ) < 𝑥 ↔ 𝑦 < ( 𝑥 + ( 2 · π ) ) ) ) |
| 29 | 27 28 | mpbird | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) → ( 𝑦 − ( 2 · π ) ) < 𝑥 ) |
| 30 | readdcl | ⊢ ( ( 𝑦 ∈ ℝ ∧ ( 2 · π ) ∈ ℝ ) → ( 𝑦 + ( 2 · π ) ) ∈ ℝ ) | |
| 31 | 14 8 30 | sylancl | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) → ( 𝑦 + ( 2 · π ) ) ∈ ℝ ) |
| 32 | 19 | simp3d | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) → 𝑥 ≤ ( 𝐴 + ( 2 · π ) ) ) |
| 33 | 13 | simp2d | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) → 𝐴 < 𝑦 ) |
| 34 | 5 14 24 33 | ltadd1dd | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) → ( 𝐴 + ( 2 · π ) ) < ( 𝑦 + ( 2 · π ) ) ) |
| 35 | 20 10 31 32 34 | lelttrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) → 𝑥 < ( 𝑦 + ( 2 · π ) ) ) |
| 36 | 20 14 24 | absdifltd | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) → ( ( abs ‘ ( 𝑥 − 𝑦 ) ) < ( 2 · π ) ↔ ( ( 𝑦 − ( 2 · π ) ) < 𝑥 ∧ 𝑥 < ( 𝑦 + ( 2 · π ) ) ) ) ) |
| 37 | 29 35 36 | mpbir2and | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) → ( abs ‘ ( 𝑥 − 𝑦 ) ) < ( 2 · π ) ) |