This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for efif1o . (Contributed by Mario Carneiro, 13-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | efif1olem1.1 | |- D = ( A (,] ( A + ( 2 x. _pi ) ) ) |
|
| Assertion | efif1olem1 | |- ( ( A e. RR /\ ( x e. D /\ y e. D ) ) -> ( abs ` ( x - y ) ) < ( 2 x. _pi ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efif1olem1.1 | |- D = ( A (,] ( A + ( 2 x. _pi ) ) ) |
|
| 2 | simprr | |- ( ( A e. RR /\ ( x e. D /\ y e. D ) ) -> y e. D ) |
|
| 3 | 2 1 | eleqtrdi | |- ( ( A e. RR /\ ( x e. D /\ y e. D ) ) -> y e. ( A (,] ( A + ( 2 x. _pi ) ) ) ) |
| 4 | rexr | |- ( A e. RR -> A e. RR* ) |
|
| 5 | simpl | |- ( ( A e. RR /\ ( x e. D /\ y e. D ) ) -> A e. RR ) |
|
| 6 | 2re | |- 2 e. RR |
|
| 7 | pire | |- _pi e. RR |
|
| 8 | 6 7 | remulcli | |- ( 2 x. _pi ) e. RR |
| 9 | readdcl | |- ( ( A e. RR /\ ( 2 x. _pi ) e. RR ) -> ( A + ( 2 x. _pi ) ) e. RR ) |
|
| 10 | 5 8 9 | sylancl | |- ( ( A e. RR /\ ( x e. D /\ y e. D ) ) -> ( A + ( 2 x. _pi ) ) e. RR ) |
| 11 | elioc2 | |- ( ( A e. RR* /\ ( A + ( 2 x. _pi ) ) e. RR ) -> ( y e. ( A (,] ( A + ( 2 x. _pi ) ) ) <-> ( y e. RR /\ A < y /\ y <_ ( A + ( 2 x. _pi ) ) ) ) ) |
|
| 12 | 4 10 11 | syl2an2r | |- ( ( A e. RR /\ ( x e. D /\ y e. D ) ) -> ( y e. ( A (,] ( A + ( 2 x. _pi ) ) ) <-> ( y e. RR /\ A < y /\ y <_ ( A + ( 2 x. _pi ) ) ) ) ) |
| 13 | 3 12 | mpbid | |- ( ( A e. RR /\ ( x e. D /\ y e. D ) ) -> ( y e. RR /\ A < y /\ y <_ ( A + ( 2 x. _pi ) ) ) ) |
| 14 | 13 | simp1d | |- ( ( A e. RR /\ ( x e. D /\ y e. D ) ) -> y e. RR ) |
| 15 | simprl | |- ( ( A e. RR /\ ( x e. D /\ y e. D ) ) -> x e. D ) |
|
| 16 | 15 1 | eleqtrdi | |- ( ( A e. RR /\ ( x e. D /\ y e. D ) ) -> x e. ( A (,] ( A + ( 2 x. _pi ) ) ) ) |
| 17 | elioc2 | |- ( ( A e. RR* /\ ( A + ( 2 x. _pi ) ) e. RR ) -> ( x e. ( A (,] ( A + ( 2 x. _pi ) ) ) <-> ( x e. RR /\ A < x /\ x <_ ( A + ( 2 x. _pi ) ) ) ) ) |
|
| 18 | 4 10 17 | syl2an2r | |- ( ( A e. RR /\ ( x e. D /\ y e. D ) ) -> ( x e. ( A (,] ( A + ( 2 x. _pi ) ) ) <-> ( x e. RR /\ A < x /\ x <_ ( A + ( 2 x. _pi ) ) ) ) ) |
| 19 | 16 18 | mpbid | |- ( ( A e. RR /\ ( x e. D /\ y e. D ) ) -> ( x e. RR /\ A < x /\ x <_ ( A + ( 2 x. _pi ) ) ) ) |
| 20 | 19 | simp1d | |- ( ( A e. RR /\ ( x e. D /\ y e. D ) ) -> x e. RR ) |
| 21 | readdcl | |- ( ( x e. RR /\ ( 2 x. _pi ) e. RR ) -> ( x + ( 2 x. _pi ) ) e. RR ) |
|
| 22 | 20 8 21 | sylancl | |- ( ( A e. RR /\ ( x e. D /\ y e. D ) ) -> ( x + ( 2 x. _pi ) ) e. RR ) |
| 23 | 13 | simp3d | |- ( ( A e. RR /\ ( x e. D /\ y e. D ) ) -> y <_ ( A + ( 2 x. _pi ) ) ) |
| 24 | 8 | a1i | |- ( ( A e. RR /\ ( x e. D /\ y e. D ) ) -> ( 2 x. _pi ) e. RR ) |
| 25 | 19 | simp2d | |- ( ( A e. RR /\ ( x e. D /\ y e. D ) ) -> A < x ) |
| 26 | 5 20 24 25 | ltadd1dd | |- ( ( A e. RR /\ ( x e. D /\ y e. D ) ) -> ( A + ( 2 x. _pi ) ) < ( x + ( 2 x. _pi ) ) ) |
| 27 | 14 10 22 23 26 | lelttrd | |- ( ( A e. RR /\ ( x e. D /\ y e. D ) ) -> y < ( x + ( 2 x. _pi ) ) ) |
| 28 | 14 24 20 | ltsubaddd | |- ( ( A e. RR /\ ( x e. D /\ y e. D ) ) -> ( ( y - ( 2 x. _pi ) ) < x <-> y < ( x + ( 2 x. _pi ) ) ) ) |
| 29 | 27 28 | mpbird | |- ( ( A e. RR /\ ( x e. D /\ y e. D ) ) -> ( y - ( 2 x. _pi ) ) < x ) |
| 30 | readdcl | |- ( ( y e. RR /\ ( 2 x. _pi ) e. RR ) -> ( y + ( 2 x. _pi ) ) e. RR ) |
|
| 31 | 14 8 30 | sylancl | |- ( ( A e. RR /\ ( x e. D /\ y e. D ) ) -> ( y + ( 2 x. _pi ) ) e. RR ) |
| 32 | 19 | simp3d | |- ( ( A e. RR /\ ( x e. D /\ y e. D ) ) -> x <_ ( A + ( 2 x. _pi ) ) ) |
| 33 | 13 | simp2d | |- ( ( A e. RR /\ ( x e. D /\ y e. D ) ) -> A < y ) |
| 34 | 5 14 24 33 | ltadd1dd | |- ( ( A e. RR /\ ( x e. D /\ y e. D ) ) -> ( A + ( 2 x. _pi ) ) < ( y + ( 2 x. _pi ) ) ) |
| 35 | 20 10 31 32 34 | lelttrd | |- ( ( A e. RR /\ ( x e. D /\ y e. D ) ) -> x < ( y + ( 2 x. _pi ) ) ) |
| 36 | 20 14 24 | absdifltd | |- ( ( A e. RR /\ ( x e. D /\ y e. D ) ) -> ( ( abs ` ( x - y ) ) < ( 2 x. _pi ) <-> ( ( y - ( 2 x. _pi ) ) < x /\ x < ( y + ( 2 x. _pi ) ) ) ) ) |
| 37 | 29 35 36 | mpbir2and | |- ( ( A e. RR /\ ( x e. D /\ y e. D ) ) -> ( abs ` ( x - y ) ) < ( 2 x. _pi ) ) |