This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of the pair swapping function on 2o . (Contributed by Mario Carneiro, 27-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2oconcl | ⊢ ( 𝐴 ∈ 2o → ( 1o ∖ 𝐴 ) ∈ 2o ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpri | ⊢ ( 𝐴 ∈ { ∅ , 1o } → ( 𝐴 = ∅ ∨ 𝐴 = 1o ) ) | |
| 2 | difeq2 | ⊢ ( 𝐴 = ∅ → ( 1o ∖ 𝐴 ) = ( 1o ∖ ∅ ) ) | |
| 3 | dif0 | ⊢ ( 1o ∖ ∅ ) = 1o | |
| 4 | 2 3 | eqtrdi | ⊢ ( 𝐴 = ∅ → ( 1o ∖ 𝐴 ) = 1o ) |
| 5 | difeq2 | ⊢ ( 𝐴 = 1o → ( 1o ∖ 𝐴 ) = ( 1o ∖ 1o ) ) | |
| 6 | difid | ⊢ ( 1o ∖ 1o ) = ∅ | |
| 7 | 5 6 | eqtrdi | ⊢ ( 𝐴 = 1o → ( 1o ∖ 𝐴 ) = ∅ ) |
| 8 | 4 7 | orim12i | ⊢ ( ( 𝐴 = ∅ ∨ 𝐴 = 1o ) → ( ( 1o ∖ 𝐴 ) = 1o ∨ ( 1o ∖ 𝐴 ) = ∅ ) ) |
| 9 | 8 | orcomd | ⊢ ( ( 𝐴 = ∅ ∨ 𝐴 = 1o ) → ( ( 1o ∖ 𝐴 ) = ∅ ∨ ( 1o ∖ 𝐴 ) = 1o ) ) |
| 10 | 1 9 | syl | ⊢ ( 𝐴 ∈ { ∅ , 1o } → ( ( 1o ∖ 𝐴 ) = ∅ ∨ ( 1o ∖ 𝐴 ) = 1o ) ) |
| 11 | 1on | ⊢ 1o ∈ On | |
| 12 | difexg | ⊢ ( 1o ∈ On → ( 1o ∖ 𝐴 ) ∈ V ) | |
| 13 | 11 12 | ax-mp | ⊢ ( 1o ∖ 𝐴 ) ∈ V |
| 14 | 13 | elpr | ⊢ ( ( 1o ∖ 𝐴 ) ∈ { ∅ , 1o } ↔ ( ( 1o ∖ 𝐴 ) = ∅ ∨ ( 1o ∖ 𝐴 ) = 1o ) ) |
| 15 | 10 14 | sylibr | ⊢ ( 𝐴 ∈ { ∅ , 1o } → ( 1o ∖ 𝐴 ) ∈ { ∅ , 1o } ) |
| 16 | df2o3 | ⊢ 2o = { ∅ , 1o } | |
| 17 | 15 16 | eleqtrrdi | ⊢ ( 𝐴 ∈ { ∅ , 1o } → ( 1o ∖ 𝐴 ) ∈ 2o ) |
| 18 | 17 16 | eleq2s | ⊢ ( 𝐴 ∈ 2o → ( 1o ∖ 𝐴 ) ∈ 2o ) |