This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Assuming that operation F is commutative (second hypothesis), closed (third hypothesis), associative (fourth hypothesis), and has the cancellation property (fifth hypothesis), show that the relation .~ , specified by the first hypothesis, is an equivalence relation. (Contributed by NM, 16-Feb-1996) (Revised by Mario Carneiro, 12-Aug-2015) (Proof shortened by AV, 1-May-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ecopopr.1 | ⊢ ∼ = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ ( 𝑆 × 𝑆 ) ∧ 𝑦 ∈ ( 𝑆 × 𝑆 ) ) ∧ ∃ 𝑧 ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ( ( 𝑥 = 〈 𝑧 , 𝑤 〉 ∧ 𝑦 = 〈 𝑣 , 𝑢 〉 ) ∧ ( 𝑧 + 𝑢 ) = ( 𝑤 + 𝑣 ) ) ) } | |
| ecopopr.com | ⊢ ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) | ||
| ecopopr.cl | ⊢ ( ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) → ( 𝑥 + 𝑦 ) ∈ 𝑆 ) | ||
| ecopopr.ass | ⊢ ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) | ||
| ecopopr.can | ⊢ ( ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) → ( ( 𝑥 + 𝑦 ) = ( 𝑥 + 𝑧 ) → 𝑦 = 𝑧 ) ) | ||
| Assertion | ecopover | ⊢ ∼ Er ( 𝑆 × 𝑆 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ecopopr.1 | ⊢ ∼ = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ ( 𝑆 × 𝑆 ) ∧ 𝑦 ∈ ( 𝑆 × 𝑆 ) ) ∧ ∃ 𝑧 ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ( ( 𝑥 = 〈 𝑧 , 𝑤 〉 ∧ 𝑦 = 〈 𝑣 , 𝑢 〉 ) ∧ ( 𝑧 + 𝑢 ) = ( 𝑤 + 𝑣 ) ) ) } | |
| 2 | ecopopr.com | ⊢ ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) | |
| 3 | ecopopr.cl | ⊢ ( ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) → ( 𝑥 + 𝑦 ) ∈ 𝑆 ) | |
| 4 | ecopopr.ass | ⊢ ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) | |
| 5 | ecopopr.can | ⊢ ( ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) → ( ( 𝑥 + 𝑦 ) = ( 𝑥 + 𝑧 ) → 𝑦 = 𝑧 ) ) | |
| 6 | 1 | relopabiv | ⊢ Rel ∼ |
| 7 | 1 2 | ecopovsym | ⊢ ( 𝑓 ∼ 𝑔 → 𝑔 ∼ 𝑓 ) |
| 8 | 1 2 3 4 5 | ecopovtrn | ⊢ ( ( 𝑓 ∼ 𝑔 ∧ 𝑔 ∼ ℎ ) → 𝑓 ∼ ℎ ) |
| 9 | vex | ⊢ 𝑔 ∈ V | |
| 10 | vex | ⊢ ℎ ∈ V | |
| 11 | 9 10 2 | caovcom | ⊢ ( 𝑔 + ℎ ) = ( ℎ + 𝑔 ) |
| 12 | 1 | ecopoveq | ⊢ ( ( ( 𝑔 ∈ 𝑆 ∧ ℎ ∈ 𝑆 ) ∧ ( 𝑔 ∈ 𝑆 ∧ ℎ ∈ 𝑆 ) ) → ( 〈 𝑔 , ℎ 〉 ∼ 〈 𝑔 , ℎ 〉 ↔ ( 𝑔 + ℎ ) = ( ℎ + 𝑔 ) ) ) |
| 13 | 11 12 | mpbiri | ⊢ ( ( ( 𝑔 ∈ 𝑆 ∧ ℎ ∈ 𝑆 ) ∧ ( 𝑔 ∈ 𝑆 ∧ ℎ ∈ 𝑆 ) ) → 〈 𝑔 , ℎ 〉 ∼ 〈 𝑔 , ℎ 〉 ) |
| 14 | 13 | anidms | ⊢ ( ( 𝑔 ∈ 𝑆 ∧ ℎ ∈ 𝑆 ) → 〈 𝑔 , ℎ 〉 ∼ 〈 𝑔 , ℎ 〉 ) |
| 15 | 14 | rgen2 | ⊢ ∀ 𝑔 ∈ 𝑆 ∀ ℎ ∈ 𝑆 〈 𝑔 , ℎ 〉 ∼ 〈 𝑔 , ℎ 〉 |
| 16 | breq12 | ⊢ ( ( 𝑓 = 〈 𝑔 , ℎ 〉 ∧ 𝑓 = 〈 𝑔 , ℎ 〉 ) → ( 𝑓 ∼ 𝑓 ↔ 〈 𝑔 , ℎ 〉 ∼ 〈 𝑔 , ℎ 〉 ) ) | |
| 17 | 16 | anidms | ⊢ ( 𝑓 = 〈 𝑔 , ℎ 〉 → ( 𝑓 ∼ 𝑓 ↔ 〈 𝑔 , ℎ 〉 ∼ 〈 𝑔 , ℎ 〉 ) ) |
| 18 | 17 | ralxp | ⊢ ( ∀ 𝑓 ∈ ( 𝑆 × 𝑆 ) 𝑓 ∼ 𝑓 ↔ ∀ 𝑔 ∈ 𝑆 ∀ ℎ ∈ 𝑆 〈 𝑔 , ℎ 〉 ∼ 〈 𝑔 , ℎ 〉 ) |
| 19 | 15 18 | mpbir | ⊢ ∀ 𝑓 ∈ ( 𝑆 × 𝑆 ) 𝑓 ∼ 𝑓 |
| 20 | 19 | rspec | ⊢ ( 𝑓 ∈ ( 𝑆 × 𝑆 ) → 𝑓 ∼ 𝑓 ) |
| 21 | opabssxp | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ ( 𝑆 × 𝑆 ) ∧ 𝑦 ∈ ( 𝑆 × 𝑆 ) ) ∧ ∃ 𝑧 ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ( ( 𝑥 = 〈 𝑧 , 𝑤 〉 ∧ 𝑦 = 〈 𝑣 , 𝑢 〉 ) ∧ ( 𝑧 + 𝑢 ) = ( 𝑤 + 𝑣 ) ) ) } ⊆ ( ( 𝑆 × 𝑆 ) × ( 𝑆 × 𝑆 ) ) | |
| 22 | 1 21 | eqsstri | ⊢ ∼ ⊆ ( ( 𝑆 × 𝑆 ) × ( 𝑆 × 𝑆 ) ) |
| 23 | 22 | ssbri | ⊢ ( 𝑓 ∼ 𝑓 → 𝑓 ( ( 𝑆 × 𝑆 ) × ( 𝑆 × 𝑆 ) ) 𝑓 ) |
| 24 | brxp | ⊢ ( 𝑓 ( ( 𝑆 × 𝑆 ) × ( 𝑆 × 𝑆 ) ) 𝑓 ↔ ( 𝑓 ∈ ( 𝑆 × 𝑆 ) ∧ 𝑓 ∈ ( 𝑆 × 𝑆 ) ) ) | |
| 25 | 24 | simplbi | ⊢ ( 𝑓 ( ( 𝑆 × 𝑆 ) × ( 𝑆 × 𝑆 ) ) 𝑓 → 𝑓 ∈ ( 𝑆 × 𝑆 ) ) |
| 26 | 23 25 | syl | ⊢ ( 𝑓 ∼ 𝑓 → 𝑓 ∈ ( 𝑆 × 𝑆 ) ) |
| 27 | 20 26 | impbii | ⊢ ( 𝑓 ∈ ( 𝑆 × 𝑆 ) ↔ 𝑓 ∼ 𝑓 ) |
| 28 | 6 7 8 27 | iseri | ⊢ ∼ Er ( 𝑆 × 𝑆 ) |