This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Assuming that operation F is commutative (second hypothesis), closed (third hypothesis), associative (fourth hypothesis), and has the cancellation property (fifth hypothesis), show that the relation .~ , specified by the first hypothesis, is an equivalence relation. (Contributed by NM, 16-Feb-1996) (Revised by Mario Carneiro, 12-Aug-2015) (Proof shortened by AV, 1-May-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ecopopr.1 | ||
| ecopopr.com | |||
| ecopopr.cl | |||
| ecopopr.ass | |||
| ecopopr.can | |||
| Assertion | ecopover |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ecopopr.1 | ||
| 2 | ecopopr.com | ||
| 3 | ecopopr.cl | ||
| 4 | ecopopr.ass | ||
| 5 | ecopopr.can | ||
| 6 | 1 | relopabiv | |
| 7 | 1 2 | ecopovsym | |
| 8 | 1 2 3 4 5 | ecopovtrn | |
| 9 | vex | ||
| 10 | vex | ||
| 11 | 9 10 2 | caovcom | |
| 12 | 1 | ecopoveq | |
| 13 | 11 12 | mpbiri | |
| 14 | 13 | anidms | |
| 15 | 14 | rgen2 | |
| 16 | breq12 | ||
| 17 | 16 | anidms | |
| 18 | 17 | ralxp | |
| 19 | 15 18 | mpbir | |
| 20 | 19 | rspec | |
| 21 | opabssxp | ||
| 22 | 1 21 | eqsstri | |
| 23 | 22 | ssbri | |
| 24 | brxp | ||
| 25 | 24 | simplbi | |
| 26 | 23 25 | syl | |
| 27 | 20 26 | impbii | |
| 28 | 6 7 8 27 | iseri |