This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Assuming that operation F is commutative (second hypothesis), closed (third hypothesis), associative (fourth hypothesis), and has the cancellation property (fifth hypothesis), show that the relation .~ , specified by the first hypothesis, is an equivalence relation. (Contributed by NM, 16-Feb-1996) (Revised by Mario Carneiro, 12-Aug-2015) (Proof shortened by AV, 1-May-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ecopopr.1 | |- .~ = { <. x , y >. | ( ( x e. ( S X. S ) /\ y e. ( S X. S ) ) /\ E. z E. w E. v E. u ( ( x = <. z , w >. /\ y = <. v , u >. ) /\ ( z .+ u ) = ( w .+ v ) ) ) } |
|
| ecopopr.com | |- ( x .+ y ) = ( y .+ x ) |
||
| ecopopr.cl | |- ( ( x e. S /\ y e. S ) -> ( x .+ y ) e. S ) |
||
| ecopopr.ass | |- ( ( x .+ y ) .+ z ) = ( x .+ ( y .+ z ) ) |
||
| ecopopr.can | |- ( ( x e. S /\ y e. S ) -> ( ( x .+ y ) = ( x .+ z ) -> y = z ) ) |
||
| Assertion | ecopover | |- .~ Er ( S X. S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ecopopr.1 | |- .~ = { <. x , y >. | ( ( x e. ( S X. S ) /\ y e. ( S X. S ) ) /\ E. z E. w E. v E. u ( ( x = <. z , w >. /\ y = <. v , u >. ) /\ ( z .+ u ) = ( w .+ v ) ) ) } |
|
| 2 | ecopopr.com | |- ( x .+ y ) = ( y .+ x ) |
|
| 3 | ecopopr.cl | |- ( ( x e. S /\ y e. S ) -> ( x .+ y ) e. S ) |
|
| 4 | ecopopr.ass | |- ( ( x .+ y ) .+ z ) = ( x .+ ( y .+ z ) ) |
|
| 5 | ecopopr.can | |- ( ( x e. S /\ y e. S ) -> ( ( x .+ y ) = ( x .+ z ) -> y = z ) ) |
|
| 6 | 1 | relopabiv | |- Rel .~ |
| 7 | 1 2 | ecopovsym | |- ( f .~ g -> g .~ f ) |
| 8 | 1 2 3 4 5 | ecopovtrn | |- ( ( f .~ g /\ g .~ h ) -> f .~ h ) |
| 9 | vex | |- g e. _V |
|
| 10 | vex | |- h e. _V |
|
| 11 | 9 10 2 | caovcom | |- ( g .+ h ) = ( h .+ g ) |
| 12 | 1 | ecopoveq | |- ( ( ( g e. S /\ h e. S ) /\ ( g e. S /\ h e. S ) ) -> ( <. g , h >. .~ <. g , h >. <-> ( g .+ h ) = ( h .+ g ) ) ) |
| 13 | 11 12 | mpbiri | |- ( ( ( g e. S /\ h e. S ) /\ ( g e. S /\ h e. S ) ) -> <. g , h >. .~ <. g , h >. ) |
| 14 | 13 | anidms | |- ( ( g e. S /\ h e. S ) -> <. g , h >. .~ <. g , h >. ) |
| 15 | 14 | rgen2 | |- A. g e. S A. h e. S <. g , h >. .~ <. g , h >. |
| 16 | breq12 | |- ( ( f = <. g , h >. /\ f = <. g , h >. ) -> ( f .~ f <-> <. g , h >. .~ <. g , h >. ) ) |
|
| 17 | 16 | anidms | |- ( f = <. g , h >. -> ( f .~ f <-> <. g , h >. .~ <. g , h >. ) ) |
| 18 | 17 | ralxp | |- ( A. f e. ( S X. S ) f .~ f <-> A. g e. S A. h e. S <. g , h >. .~ <. g , h >. ) |
| 19 | 15 18 | mpbir | |- A. f e. ( S X. S ) f .~ f |
| 20 | 19 | rspec | |- ( f e. ( S X. S ) -> f .~ f ) |
| 21 | opabssxp | |- { <. x , y >. | ( ( x e. ( S X. S ) /\ y e. ( S X. S ) ) /\ E. z E. w E. v E. u ( ( x = <. z , w >. /\ y = <. v , u >. ) /\ ( z .+ u ) = ( w .+ v ) ) ) } C_ ( ( S X. S ) X. ( S X. S ) ) |
|
| 22 | 1 21 | eqsstri | |- .~ C_ ( ( S X. S ) X. ( S X. S ) ) |
| 23 | 22 | ssbri | |- ( f .~ f -> f ( ( S X. S ) X. ( S X. S ) ) f ) |
| 24 | brxp | |- ( f ( ( S X. S ) X. ( S X. S ) ) f <-> ( f e. ( S X. S ) /\ f e. ( S X. S ) ) ) |
|
| 25 | 24 | simplbi | |- ( f ( ( S X. S ) X. ( S X. S ) ) f -> f e. ( S X. S ) ) |
| 26 | 23 25 | syl | |- ( f .~ f -> f e. ( S X. S ) ) |
| 27 | 20 26 | impbii | |- ( f e. ( S X. S ) <-> f .~ f ) |
| 28 | 6 7 8 27 | iseri | |- .~ Er ( S X. S ) |