This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Assuming that operation F is commutative (second hypothesis), closed (third hypothesis), associative (fourth hypothesis), and has the cancellation property (fifth hypothesis), show that the relation .~ , specified by the first hypothesis, is transitive. (Contributed by NM, 11-Feb-1996) (Revised by Mario Carneiro, 26-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ecopopr.1 | ⊢ ∼ = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ ( 𝑆 × 𝑆 ) ∧ 𝑦 ∈ ( 𝑆 × 𝑆 ) ) ∧ ∃ 𝑧 ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ( ( 𝑥 = 〈 𝑧 , 𝑤 〉 ∧ 𝑦 = 〈 𝑣 , 𝑢 〉 ) ∧ ( 𝑧 + 𝑢 ) = ( 𝑤 + 𝑣 ) ) ) } | |
| ecopopr.com | ⊢ ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) | ||
| ecopopr.cl | ⊢ ( ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) → ( 𝑥 + 𝑦 ) ∈ 𝑆 ) | ||
| ecopopr.ass | ⊢ ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) | ||
| ecopopr.can | ⊢ ( ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) → ( ( 𝑥 + 𝑦 ) = ( 𝑥 + 𝑧 ) → 𝑦 = 𝑧 ) ) | ||
| Assertion | ecopovtrn | ⊢ ( ( 𝐴 ∼ 𝐵 ∧ 𝐵 ∼ 𝐶 ) → 𝐴 ∼ 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ecopopr.1 | ⊢ ∼ = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ ( 𝑆 × 𝑆 ) ∧ 𝑦 ∈ ( 𝑆 × 𝑆 ) ) ∧ ∃ 𝑧 ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ( ( 𝑥 = 〈 𝑧 , 𝑤 〉 ∧ 𝑦 = 〈 𝑣 , 𝑢 〉 ) ∧ ( 𝑧 + 𝑢 ) = ( 𝑤 + 𝑣 ) ) ) } | |
| 2 | ecopopr.com | ⊢ ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) | |
| 3 | ecopopr.cl | ⊢ ( ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) → ( 𝑥 + 𝑦 ) ∈ 𝑆 ) | |
| 4 | ecopopr.ass | ⊢ ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) | |
| 5 | ecopopr.can | ⊢ ( ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) → ( ( 𝑥 + 𝑦 ) = ( 𝑥 + 𝑧 ) → 𝑦 = 𝑧 ) ) | |
| 6 | opabssxp | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ ( 𝑆 × 𝑆 ) ∧ 𝑦 ∈ ( 𝑆 × 𝑆 ) ) ∧ ∃ 𝑧 ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ( ( 𝑥 = 〈 𝑧 , 𝑤 〉 ∧ 𝑦 = 〈 𝑣 , 𝑢 〉 ) ∧ ( 𝑧 + 𝑢 ) = ( 𝑤 + 𝑣 ) ) ) } ⊆ ( ( 𝑆 × 𝑆 ) × ( 𝑆 × 𝑆 ) ) | |
| 7 | 1 6 | eqsstri | ⊢ ∼ ⊆ ( ( 𝑆 × 𝑆 ) × ( 𝑆 × 𝑆 ) ) |
| 8 | 7 | brel | ⊢ ( 𝐴 ∼ 𝐵 → ( 𝐴 ∈ ( 𝑆 × 𝑆 ) ∧ 𝐵 ∈ ( 𝑆 × 𝑆 ) ) ) |
| 9 | 8 | simpld | ⊢ ( 𝐴 ∼ 𝐵 → 𝐴 ∈ ( 𝑆 × 𝑆 ) ) |
| 10 | 7 | brel | ⊢ ( 𝐵 ∼ 𝐶 → ( 𝐵 ∈ ( 𝑆 × 𝑆 ) ∧ 𝐶 ∈ ( 𝑆 × 𝑆 ) ) ) |
| 11 | 9 10 | anim12i | ⊢ ( ( 𝐴 ∼ 𝐵 ∧ 𝐵 ∼ 𝐶 ) → ( 𝐴 ∈ ( 𝑆 × 𝑆 ) ∧ ( 𝐵 ∈ ( 𝑆 × 𝑆 ) ∧ 𝐶 ∈ ( 𝑆 × 𝑆 ) ) ) ) |
| 12 | 3anass | ⊢ ( ( 𝐴 ∈ ( 𝑆 × 𝑆 ) ∧ 𝐵 ∈ ( 𝑆 × 𝑆 ) ∧ 𝐶 ∈ ( 𝑆 × 𝑆 ) ) ↔ ( 𝐴 ∈ ( 𝑆 × 𝑆 ) ∧ ( 𝐵 ∈ ( 𝑆 × 𝑆 ) ∧ 𝐶 ∈ ( 𝑆 × 𝑆 ) ) ) ) | |
| 13 | 11 12 | sylibr | ⊢ ( ( 𝐴 ∼ 𝐵 ∧ 𝐵 ∼ 𝐶 ) → ( 𝐴 ∈ ( 𝑆 × 𝑆 ) ∧ 𝐵 ∈ ( 𝑆 × 𝑆 ) ∧ 𝐶 ∈ ( 𝑆 × 𝑆 ) ) ) |
| 14 | eqid | ⊢ ( 𝑆 × 𝑆 ) = ( 𝑆 × 𝑆 ) | |
| 15 | breq1 | ⊢ ( 〈 𝑓 , 𝑔 〉 = 𝐴 → ( 〈 𝑓 , 𝑔 〉 ∼ 〈 ℎ , 𝑡 〉 ↔ 𝐴 ∼ 〈 ℎ , 𝑡 〉 ) ) | |
| 16 | 15 | anbi1d | ⊢ ( 〈 𝑓 , 𝑔 〉 = 𝐴 → ( ( 〈 𝑓 , 𝑔 〉 ∼ 〈 ℎ , 𝑡 〉 ∧ 〈 ℎ , 𝑡 〉 ∼ 〈 𝑠 , 𝑟 〉 ) ↔ ( 𝐴 ∼ 〈 ℎ , 𝑡 〉 ∧ 〈 ℎ , 𝑡 〉 ∼ 〈 𝑠 , 𝑟 〉 ) ) ) |
| 17 | breq1 | ⊢ ( 〈 𝑓 , 𝑔 〉 = 𝐴 → ( 〈 𝑓 , 𝑔 〉 ∼ 〈 𝑠 , 𝑟 〉 ↔ 𝐴 ∼ 〈 𝑠 , 𝑟 〉 ) ) | |
| 18 | 16 17 | imbi12d | ⊢ ( 〈 𝑓 , 𝑔 〉 = 𝐴 → ( ( ( 〈 𝑓 , 𝑔 〉 ∼ 〈 ℎ , 𝑡 〉 ∧ 〈 ℎ , 𝑡 〉 ∼ 〈 𝑠 , 𝑟 〉 ) → 〈 𝑓 , 𝑔 〉 ∼ 〈 𝑠 , 𝑟 〉 ) ↔ ( ( 𝐴 ∼ 〈 ℎ , 𝑡 〉 ∧ 〈 ℎ , 𝑡 〉 ∼ 〈 𝑠 , 𝑟 〉 ) → 𝐴 ∼ 〈 𝑠 , 𝑟 〉 ) ) ) |
| 19 | breq2 | ⊢ ( 〈 ℎ , 𝑡 〉 = 𝐵 → ( 𝐴 ∼ 〈 ℎ , 𝑡 〉 ↔ 𝐴 ∼ 𝐵 ) ) | |
| 20 | breq1 | ⊢ ( 〈 ℎ , 𝑡 〉 = 𝐵 → ( 〈 ℎ , 𝑡 〉 ∼ 〈 𝑠 , 𝑟 〉 ↔ 𝐵 ∼ 〈 𝑠 , 𝑟 〉 ) ) | |
| 21 | 19 20 | anbi12d | ⊢ ( 〈 ℎ , 𝑡 〉 = 𝐵 → ( ( 𝐴 ∼ 〈 ℎ , 𝑡 〉 ∧ 〈 ℎ , 𝑡 〉 ∼ 〈 𝑠 , 𝑟 〉 ) ↔ ( 𝐴 ∼ 𝐵 ∧ 𝐵 ∼ 〈 𝑠 , 𝑟 〉 ) ) ) |
| 22 | 21 | imbi1d | ⊢ ( 〈 ℎ , 𝑡 〉 = 𝐵 → ( ( ( 𝐴 ∼ 〈 ℎ , 𝑡 〉 ∧ 〈 ℎ , 𝑡 〉 ∼ 〈 𝑠 , 𝑟 〉 ) → 𝐴 ∼ 〈 𝑠 , 𝑟 〉 ) ↔ ( ( 𝐴 ∼ 𝐵 ∧ 𝐵 ∼ 〈 𝑠 , 𝑟 〉 ) → 𝐴 ∼ 〈 𝑠 , 𝑟 〉 ) ) ) |
| 23 | breq2 | ⊢ ( 〈 𝑠 , 𝑟 〉 = 𝐶 → ( 𝐵 ∼ 〈 𝑠 , 𝑟 〉 ↔ 𝐵 ∼ 𝐶 ) ) | |
| 24 | 23 | anbi2d | ⊢ ( 〈 𝑠 , 𝑟 〉 = 𝐶 → ( ( 𝐴 ∼ 𝐵 ∧ 𝐵 ∼ 〈 𝑠 , 𝑟 〉 ) ↔ ( 𝐴 ∼ 𝐵 ∧ 𝐵 ∼ 𝐶 ) ) ) |
| 25 | breq2 | ⊢ ( 〈 𝑠 , 𝑟 〉 = 𝐶 → ( 𝐴 ∼ 〈 𝑠 , 𝑟 〉 ↔ 𝐴 ∼ 𝐶 ) ) | |
| 26 | 24 25 | imbi12d | ⊢ ( 〈 𝑠 , 𝑟 〉 = 𝐶 → ( ( ( 𝐴 ∼ 𝐵 ∧ 𝐵 ∼ 〈 𝑠 , 𝑟 〉 ) → 𝐴 ∼ 〈 𝑠 , 𝑟 〉 ) ↔ ( ( 𝐴 ∼ 𝐵 ∧ 𝐵 ∼ 𝐶 ) → 𝐴 ∼ 𝐶 ) ) ) |
| 27 | 1 | ecopoveq | ⊢ ( ( ( 𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑆 ) ∧ ( ℎ ∈ 𝑆 ∧ 𝑡 ∈ 𝑆 ) ) → ( 〈 𝑓 , 𝑔 〉 ∼ 〈 ℎ , 𝑡 〉 ↔ ( 𝑓 + 𝑡 ) = ( 𝑔 + ℎ ) ) ) |
| 28 | 27 | 3adant3 | ⊢ ( ( ( 𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑆 ) ∧ ( ℎ ∈ 𝑆 ∧ 𝑡 ∈ 𝑆 ) ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑟 ∈ 𝑆 ) ) → ( 〈 𝑓 , 𝑔 〉 ∼ 〈 ℎ , 𝑡 〉 ↔ ( 𝑓 + 𝑡 ) = ( 𝑔 + ℎ ) ) ) |
| 29 | 1 | ecopoveq | ⊢ ( ( ( ℎ ∈ 𝑆 ∧ 𝑡 ∈ 𝑆 ) ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑟 ∈ 𝑆 ) ) → ( 〈 ℎ , 𝑡 〉 ∼ 〈 𝑠 , 𝑟 〉 ↔ ( ℎ + 𝑟 ) = ( 𝑡 + 𝑠 ) ) ) |
| 30 | 29 | 3adant1 | ⊢ ( ( ( 𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑆 ) ∧ ( ℎ ∈ 𝑆 ∧ 𝑡 ∈ 𝑆 ) ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑟 ∈ 𝑆 ) ) → ( 〈 ℎ , 𝑡 〉 ∼ 〈 𝑠 , 𝑟 〉 ↔ ( ℎ + 𝑟 ) = ( 𝑡 + 𝑠 ) ) ) |
| 31 | 28 30 | anbi12d | ⊢ ( ( ( 𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑆 ) ∧ ( ℎ ∈ 𝑆 ∧ 𝑡 ∈ 𝑆 ) ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑟 ∈ 𝑆 ) ) → ( ( 〈 𝑓 , 𝑔 〉 ∼ 〈 ℎ , 𝑡 〉 ∧ 〈 ℎ , 𝑡 〉 ∼ 〈 𝑠 , 𝑟 〉 ) ↔ ( ( 𝑓 + 𝑡 ) = ( 𝑔 + ℎ ) ∧ ( ℎ + 𝑟 ) = ( 𝑡 + 𝑠 ) ) ) ) |
| 32 | oveq12 | ⊢ ( ( ( 𝑓 + 𝑡 ) = ( 𝑔 + ℎ ) ∧ ( ℎ + 𝑟 ) = ( 𝑡 + 𝑠 ) ) → ( ( 𝑓 + 𝑡 ) + ( ℎ + 𝑟 ) ) = ( ( 𝑔 + ℎ ) + ( 𝑡 + 𝑠 ) ) ) | |
| 33 | vex | ⊢ ℎ ∈ V | |
| 34 | vex | ⊢ 𝑡 ∈ V | |
| 35 | vex | ⊢ 𝑓 ∈ V | |
| 36 | vex | ⊢ 𝑟 ∈ V | |
| 37 | 33 34 35 2 4 36 | caov411 | ⊢ ( ( ℎ + 𝑡 ) + ( 𝑓 + 𝑟 ) ) = ( ( 𝑓 + 𝑡 ) + ( ℎ + 𝑟 ) ) |
| 38 | vex | ⊢ 𝑔 ∈ V | |
| 39 | vex | ⊢ 𝑠 ∈ V | |
| 40 | 38 34 33 2 4 39 | caov411 | ⊢ ( ( 𝑔 + 𝑡 ) + ( ℎ + 𝑠 ) ) = ( ( ℎ + 𝑡 ) + ( 𝑔 + 𝑠 ) ) |
| 41 | 38 34 33 2 4 39 | caov4 | ⊢ ( ( 𝑔 + 𝑡 ) + ( ℎ + 𝑠 ) ) = ( ( 𝑔 + ℎ ) + ( 𝑡 + 𝑠 ) ) |
| 42 | 40 41 | eqtr3i | ⊢ ( ( ℎ + 𝑡 ) + ( 𝑔 + 𝑠 ) ) = ( ( 𝑔 + ℎ ) + ( 𝑡 + 𝑠 ) ) |
| 43 | 32 37 42 | 3eqtr4g | ⊢ ( ( ( 𝑓 + 𝑡 ) = ( 𝑔 + ℎ ) ∧ ( ℎ + 𝑟 ) = ( 𝑡 + 𝑠 ) ) → ( ( ℎ + 𝑡 ) + ( 𝑓 + 𝑟 ) ) = ( ( ℎ + 𝑡 ) + ( 𝑔 + 𝑠 ) ) ) |
| 44 | 31 43 | biimtrdi | ⊢ ( ( ( 𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑆 ) ∧ ( ℎ ∈ 𝑆 ∧ 𝑡 ∈ 𝑆 ) ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑟 ∈ 𝑆 ) ) → ( ( 〈 𝑓 , 𝑔 〉 ∼ 〈 ℎ , 𝑡 〉 ∧ 〈 ℎ , 𝑡 〉 ∼ 〈 𝑠 , 𝑟 〉 ) → ( ( ℎ + 𝑡 ) + ( 𝑓 + 𝑟 ) ) = ( ( ℎ + 𝑡 ) + ( 𝑔 + 𝑠 ) ) ) ) |
| 45 | 3 | caovcl | ⊢ ( ( ℎ ∈ 𝑆 ∧ 𝑡 ∈ 𝑆 ) → ( ℎ + 𝑡 ) ∈ 𝑆 ) |
| 46 | 3 | caovcl | ⊢ ( ( 𝑓 ∈ 𝑆 ∧ 𝑟 ∈ 𝑆 ) → ( 𝑓 + 𝑟 ) ∈ 𝑆 ) |
| 47 | ovex | ⊢ ( 𝑔 + 𝑠 ) ∈ V | |
| 48 | 47 5 | caovcan | ⊢ ( ( ( ℎ + 𝑡 ) ∈ 𝑆 ∧ ( 𝑓 + 𝑟 ) ∈ 𝑆 ) → ( ( ( ℎ + 𝑡 ) + ( 𝑓 + 𝑟 ) ) = ( ( ℎ + 𝑡 ) + ( 𝑔 + 𝑠 ) ) → ( 𝑓 + 𝑟 ) = ( 𝑔 + 𝑠 ) ) ) |
| 49 | 45 46 48 | syl2an | ⊢ ( ( ( ℎ ∈ 𝑆 ∧ 𝑡 ∈ 𝑆 ) ∧ ( 𝑓 ∈ 𝑆 ∧ 𝑟 ∈ 𝑆 ) ) → ( ( ( ℎ + 𝑡 ) + ( 𝑓 + 𝑟 ) ) = ( ( ℎ + 𝑡 ) + ( 𝑔 + 𝑠 ) ) → ( 𝑓 + 𝑟 ) = ( 𝑔 + 𝑠 ) ) ) |
| 50 | 49 | 3impb | ⊢ ( ( ( ℎ ∈ 𝑆 ∧ 𝑡 ∈ 𝑆 ) ∧ 𝑓 ∈ 𝑆 ∧ 𝑟 ∈ 𝑆 ) → ( ( ( ℎ + 𝑡 ) + ( 𝑓 + 𝑟 ) ) = ( ( ℎ + 𝑡 ) + ( 𝑔 + 𝑠 ) ) → ( 𝑓 + 𝑟 ) = ( 𝑔 + 𝑠 ) ) ) |
| 51 | 50 | 3com12 | ⊢ ( ( 𝑓 ∈ 𝑆 ∧ ( ℎ ∈ 𝑆 ∧ 𝑡 ∈ 𝑆 ) ∧ 𝑟 ∈ 𝑆 ) → ( ( ( ℎ + 𝑡 ) + ( 𝑓 + 𝑟 ) ) = ( ( ℎ + 𝑡 ) + ( 𝑔 + 𝑠 ) ) → ( 𝑓 + 𝑟 ) = ( 𝑔 + 𝑠 ) ) ) |
| 52 | 51 | 3adant3l | ⊢ ( ( 𝑓 ∈ 𝑆 ∧ ( ℎ ∈ 𝑆 ∧ 𝑡 ∈ 𝑆 ) ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑟 ∈ 𝑆 ) ) → ( ( ( ℎ + 𝑡 ) + ( 𝑓 + 𝑟 ) ) = ( ( ℎ + 𝑡 ) + ( 𝑔 + 𝑠 ) ) → ( 𝑓 + 𝑟 ) = ( 𝑔 + 𝑠 ) ) ) |
| 53 | 52 | 3adant1r | ⊢ ( ( ( 𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑆 ) ∧ ( ℎ ∈ 𝑆 ∧ 𝑡 ∈ 𝑆 ) ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑟 ∈ 𝑆 ) ) → ( ( ( ℎ + 𝑡 ) + ( 𝑓 + 𝑟 ) ) = ( ( ℎ + 𝑡 ) + ( 𝑔 + 𝑠 ) ) → ( 𝑓 + 𝑟 ) = ( 𝑔 + 𝑠 ) ) ) |
| 54 | 44 53 | syld | ⊢ ( ( ( 𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑆 ) ∧ ( ℎ ∈ 𝑆 ∧ 𝑡 ∈ 𝑆 ) ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑟 ∈ 𝑆 ) ) → ( ( 〈 𝑓 , 𝑔 〉 ∼ 〈 ℎ , 𝑡 〉 ∧ 〈 ℎ , 𝑡 〉 ∼ 〈 𝑠 , 𝑟 〉 ) → ( 𝑓 + 𝑟 ) = ( 𝑔 + 𝑠 ) ) ) |
| 55 | 1 | ecopoveq | ⊢ ( ( ( 𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑟 ∈ 𝑆 ) ) → ( 〈 𝑓 , 𝑔 〉 ∼ 〈 𝑠 , 𝑟 〉 ↔ ( 𝑓 + 𝑟 ) = ( 𝑔 + 𝑠 ) ) ) |
| 56 | 55 | 3adant2 | ⊢ ( ( ( 𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑆 ) ∧ ( ℎ ∈ 𝑆 ∧ 𝑡 ∈ 𝑆 ) ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑟 ∈ 𝑆 ) ) → ( 〈 𝑓 , 𝑔 〉 ∼ 〈 𝑠 , 𝑟 〉 ↔ ( 𝑓 + 𝑟 ) = ( 𝑔 + 𝑠 ) ) ) |
| 57 | 54 56 | sylibrd | ⊢ ( ( ( 𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑆 ) ∧ ( ℎ ∈ 𝑆 ∧ 𝑡 ∈ 𝑆 ) ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑟 ∈ 𝑆 ) ) → ( ( 〈 𝑓 , 𝑔 〉 ∼ 〈 ℎ , 𝑡 〉 ∧ 〈 ℎ , 𝑡 〉 ∼ 〈 𝑠 , 𝑟 〉 ) → 〈 𝑓 , 𝑔 〉 ∼ 〈 𝑠 , 𝑟 〉 ) ) |
| 58 | 14 18 22 26 57 | 3optocl | ⊢ ( ( 𝐴 ∈ ( 𝑆 × 𝑆 ) ∧ 𝐵 ∈ ( 𝑆 × 𝑆 ) ∧ 𝐶 ∈ ( 𝑆 × 𝑆 ) ) → ( ( 𝐴 ∼ 𝐵 ∧ 𝐵 ∼ 𝐶 ) → 𝐴 ∼ 𝐶 ) ) |
| 59 | 13 58 | mpcom | ⊢ ( ( 𝐴 ∼ 𝐵 ∧ 𝐵 ∼ 𝐶 ) → 𝐴 ∼ 𝐶 ) |