This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The derivative of sin^N . (Contributed by Glauco Siliprandi, 29-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | dvsinexp.5 | ⊢ ( 𝜑 → 𝑁 ∈ ℕ ) | |
| Assertion | dvsinexp | ⊢ ( 𝜑 → ( ℂ D ( 𝑥 ∈ ℂ ↦ ( ( sin ‘ 𝑥 ) ↑ 𝑁 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( ( 𝑁 · ( ( sin ‘ 𝑥 ) ↑ ( 𝑁 − 1 ) ) ) · ( cos ‘ 𝑥 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvsinexp.5 | ⊢ ( 𝜑 → 𝑁 ∈ ℕ ) | |
| 2 | cnelprrecn | ⊢ ℂ ∈ { ℝ , ℂ } | |
| 3 | 2 | a1i | ⊢ ( 𝜑 → ℂ ∈ { ℝ , ℂ } ) |
| 4 | sinf | ⊢ sin : ℂ ⟶ ℂ | |
| 5 | 4 | a1i | ⊢ ( 𝜑 → sin : ℂ ⟶ ℂ ) |
| 6 | 5 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ( sin ‘ 𝑥 ) ∈ ℂ ) |
| 7 | cosf | ⊢ cos : ℂ ⟶ ℂ | |
| 8 | 7 | a1i | ⊢ ( 𝜑 → cos : ℂ ⟶ ℂ ) |
| 9 | 8 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ( cos ‘ 𝑥 ) ∈ ℂ ) |
| 10 | simpr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) → 𝑦 ∈ ℂ ) | |
| 11 | 1 | nnnn0d | ⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
| 12 | 11 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) → 𝑁 ∈ ℕ0 ) |
| 13 | 10 12 | expcld | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) → ( 𝑦 ↑ 𝑁 ) ∈ ℂ ) |
| 14 | 1 | nncnd | ⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
| 15 | 14 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) → 𝑁 ∈ ℂ ) |
| 16 | nnm1nn0 | ⊢ ( 𝑁 ∈ ℕ → ( 𝑁 − 1 ) ∈ ℕ0 ) | |
| 17 | 1 16 | syl | ⊢ ( 𝜑 → ( 𝑁 − 1 ) ∈ ℕ0 ) |
| 18 | 17 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) → ( 𝑁 − 1 ) ∈ ℕ0 ) |
| 19 | 10 18 | expcld | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) → ( 𝑦 ↑ ( 𝑁 − 1 ) ) ∈ ℂ ) |
| 20 | 15 19 | mulcld | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) → ( 𝑁 · ( 𝑦 ↑ ( 𝑁 − 1 ) ) ) ∈ ℂ ) |
| 21 | dvsin | ⊢ ( ℂ D sin ) = cos | |
| 22 | 5 | feqmptd | ⊢ ( 𝜑 → sin = ( 𝑥 ∈ ℂ ↦ ( sin ‘ 𝑥 ) ) ) |
| 23 | 22 | oveq2d | ⊢ ( 𝜑 → ( ℂ D sin ) = ( ℂ D ( 𝑥 ∈ ℂ ↦ ( sin ‘ 𝑥 ) ) ) ) |
| 24 | 8 | feqmptd | ⊢ ( 𝜑 → cos = ( 𝑥 ∈ ℂ ↦ ( cos ‘ 𝑥 ) ) ) |
| 25 | 21 23 24 | 3eqtr3a | ⊢ ( 𝜑 → ( ℂ D ( 𝑥 ∈ ℂ ↦ ( sin ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( cos ‘ 𝑥 ) ) ) |
| 26 | dvexp | ⊢ ( 𝑁 ∈ ℕ → ( ℂ D ( 𝑦 ∈ ℂ ↦ ( 𝑦 ↑ 𝑁 ) ) ) = ( 𝑦 ∈ ℂ ↦ ( 𝑁 · ( 𝑦 ↑ ( 𝑁 − 1 ) ) ) ) ) | |
| 27 | 1 26 | syl | ⊢ ( 𝜑 → ( ℂ D ( 𝑦 ∈ ℂ ↦ ( 𝑦 ↑ 𝑁 ) ) ) = ( 𝑦 ∈ ℂ ↦ ( 𝑁 · ( 𝑦 ↑ ( 𝑁 − 1 ) ) ) ) ) |
| 28 | oveq1 | ⊢ ( 𝑦 = ( sin ‘ 𝑥 ) → ( 𝑦 ↑ 𝑁 ) = ( ( sin ‘ 𝑥 ) ↑ 𝑁 ) ) | |
| 29 | oveq1 | ⊢ ( 𝑦 = ( sin ‘ 𝑥 ) → ( 𝑦 ↑ ( 𝑁 − 1 ) ) = ( ( sin ‘ 𝑥 ) ↑ ( 𝑁 − 1 ) ) ) | |
| 30 | 29 | oveq2d | ⊢ ( 𝑦 = ( sin ‘ 𝑥 ) → ( 𝑁 · ( 𝑦 ↑ ( 𝑁 − 1 ) ) ) = ( 𝑁 · ( ( sin ‘ 𝑥 ) ↑ ( 𝑁 − 1 ) ) ) ) |
| 31 | 3 3 6 9 13 20 25 27 28 30 | dvmptco | ⊢ ( 𝜑 → ( ℂ D ( 𝑥 ∈ ℂ ↦ ( ( sin ‘ 𝑥 ) ↑ 𝑁 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( ( 𝑁 · ( ( sin ‘ 𝑥 ) ↑ ( 𝑁 − 1 ) ) ) · ( cos ‘ 𝑥 ) ) ) ) |