This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distributive law for the division operation of a ring. (Contributed by Thierry Arnoux, 30-Oct-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvrdir.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| dvrdir.u | ⊢ 𝑈 = ( Unit ‘ 𝑅 ) | ||
| dvrdir.p | ⊢ + = ( +g ‘ 𝑅 ) | ||
| dvrdir.t | ⊢ / = ( /r ‘ 𝑅 ) | ||
| Assertion | dvrdir | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈 ) ) → ( ( 𝑋 + 𝑌 ) / 𝑍 ) = ( ( 𝑋 / 𝑍 ) + ( 𝑌 / 𝑍 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvrdir.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | dvrdir.u | ⊢ 𝑈 = ( Unit ‘ 𝑅 ) | |
| 3 | dvrdir.p | ⊢ + = ( +g ‘ 𝑅 ) | |
| 4 | dvrdir.t | ⊢ / = ( /r ‘ 𝑅 ) | |
| 5 | simpl | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈 ) ) → 𝑅 ∈ Ring ) | |
| 6 | simpr1 | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈 ) ) → 𝑋 ∈ 𝐵 ) | |
| 7 | simpr2 | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈 ) ) → 𝑌 ∈ 𝐵 ) | |
| 8 | 1 2 | unitss | ⊢ 𝑈 ⊆ 𝐵 |
| 9 | simpr3 | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈 ) ) → 𝑍 ∈ 𝑈 ) | |
| 10 | eqid | ⊢ ( invr ‘ 𝑅 ) = ( invr ‘ 𝑅 ) | |
| 11 | 2 10 | unitinvcl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑍 ∈ 𝑈 ) → ( ( invr ‘ 𝑅 ) ‘ 𝑍 ) ∈ 𝑈 ) |
| 12 | 9 11 | syldan | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈 ) ) → ( ( invr ‘ 𝑅 ) ‘ 𝑍 ) ∈ 𝑈 ) |
| 13 | 8 12 | sselid | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈 ) ) → ( ( invr ‘ 𝑅 ) ‘ 𝑍 ) ∈ 𝐵 ) |
| 14 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 15 | 1 3 14 | ringdir | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ ( ( invr ‘ 𝑅 ) ‘ 𝑍 ) ∈ 𝐵 ) ) → ( ( 𝑋 + 𝑌 ) ( .r ‘ 𝑅 ) ( ( invr ‘ 𝑅 ) ‘ 𝑍 ) ) = ( ( 𝑋 ( .r ‘ 𝑅 ) ( ( invr ‘ 𝑅 ) ‘ 𝑍 ) ) + ( 𝑌 ( .r ‘ 𝑅 ) ( ( invr ‘ 𝑅 ) ‘ 𝑍 ) ) ) ) |
| 16 | 5 6 7 13 15 | syl13anc | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈 ) ) → ( ( 𝑋 + 𝑌 ) ( .r ‘ 𝑅 ) ( ( invr ‘ 𝑅 ) ‘ 𝑍 ) ) = ( ( 𝑋 ( .r ‘ 𝑅 ) ( ( invr ‘ 𝑅 ) ‘ 𝑍 ) ) + ( 𝑌 ( .r ‘ 𝑅 ) ( ( invr ‘ 𝑅 ) ‘ 𝑍 ) ) ) ) |
| 17 | ringgrp | ⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) | |
| 18 | 17 | adantr | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈 ) ) → 𝑅 ∈ Grp ) |
| 19 | 1 3 | grpcl | ⊢ ( ( 𝑅 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 + 𝑌 ) ∈ 𝐵 ) |
| 20 | 18 6 7 19 | syl3anc | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈 ) ) → ( 𝑋 + 𝑌 ) ∈ 𝐵 ) |
| 21 | 1 14 2 10 4 | dvrval | ⊢ ( ( ( 𝑋 + 𝑌 ) ∈ 𝐵 ∧ 𝑍 ∈ 𝑈 ) → ( ( 𝑋 + 𝑌 ) / 𝑍 ) = ( ( 𝑋 + 𝑌 ) ( .r ‘ 𝑅 ) ( ( invr ‘ 𝑅 ) ‘ 𝑍 ) ) ) |
| 22 | 20 9 21 | syl2anc | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈 ) ) → ( ( 𝑋 + 𝑌 ) / 𝑍 ) = ( ( 𝑋 + 𝑌 ) ( .r ‘ 𝑅 ) ( ( invr ‘ 𝑅 ) ‘ 𝑍 ) ) ) |
| 23 | 1 14 2 10 4 | dvrval | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈 ) → ( 𝑋 / 𝑍 ) = ( 𝑋 ( .r ‘ 𝑅 ) ( ( invr ‘ 𝑅 ) ‘ 𝑍 ) ) ) |
| 24 | 6 9 23 | syl2anc | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈 ) ) → ( 𝑋 / 𝑍 ) = ( 𝑋 ( .r ‘ 𝑅 ) ( ( invr ‘ 𝑅 ) ‘ 𝑍 ) ) ) |
| 25 | 1 14 2 10 4 | dvrval | ⊢ ( ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈 ) → ( 𝑌 / 𝑍 ) = ( 𝑌 ( .r ‘ 𝑅 ) ( ( invr ‘ 𝑅 ) ‘ 𝑍 ) ) ) |
| 26 | 7 9 25 | syl2anc | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈 ) ) → ( 𝑌 / 𝑍 ) = ( 𝑌 ( .r ‘ 𝑅 ) ( ( invr ‘ 𝑅 ) ‘ 𝑍 ) ) ) |
| 27 | 24 26 | oveq12d | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈 ) ) → ( ( 𝑋 / 𝑍 ) + ( 𝑌 / 𝑍 ) ) = ( ( 𝑋 ( .r ‘ 𝑅 ) ( ( invr ‘ 𝑅 ) ‘ 𝑍 ) ) + ( 𝑌 ( .r ‘ 𝑅 ) ( ( invr ‘ 𝑅 ) ‘ 𝑍 ) ) ) ) |
| 28 | 16 22 27 | 3eqtr4d | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈 ) ) → ( ( 𝑋 + 𝑌 ) / 𝑍 ) = ( ( 𝑋 / 𝑍 ) + ( 𝑌 / 𝑍 ) ) ) |