This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A ring element divided by itself is the ring unity. ( divid analog.) (Contributed by Mario Carneiro, 18-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | unitdvcl.o | ⊢ 𝑈 = ( Unit ‘ 𝑅 ) | |
| unitdvcl.d | ⊢ / = ( /r ‘ 𝑅 ) | ||
| dvrid.o | ⊢ 1 = ( 1r ‘ 𝑅 ) | ||
| Assertion | dvrid | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ) → ( 𝑋 / 𝑋 ) = 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unitdvcl.o | ⊢ 𝑈 = ( Unit ‘ 𝑅 ) | |
| 2 | unitdvcl.d | ⊢ / = ( /r ‘ 𝑅 ) | |
| 3 | dvrid.o | ⊢ 1 = ( 1r ‘ 𝑅 ) | |
| 4 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 5 | 4 1 | unitcl | ⊢ ( 𝑋 ∈ 𝑈 → 𝑋 ∈ ( Base ‘ 𝑅 ) ) |
| 6 | 5 | adantl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ) → 𝑋 ∈ ( Base ‘ 𝑅 ) ) |
| 7 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 8 | eqid | ⊢ ( invr ‘ 𝑅 ) = ( invr ‘ 𝑅 ) | |
| 9 | 4 7 1 8 2 | dvrval | ⊢ ( ( 𝑋 ∈ ( Base ‘ 𝑅 ) ∧ 𝑋 ∈ 𝑈 ) → ( 𝑋 / 𝑋 ) = ( 𝑋 ( .r ‘ 𝑅 ) ( ( invr ‘ 𝑅 ) ‘ 𝑋 ) ) ) |
| 10 | 6 9 | sylancom | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ) → ( 𝑋 / 𝑋 ) = ( 𝑋 ( .r ‘ 𝑅 ) ( ( invr ‘ 𝑅 ) ‘ 𝑋 ) ) ) |
| 11 | 1 8 7 3 | unitrinv | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ) → ( 𝑋 ( .r ‘ 𝑅 ) ( ( invr ‘ 𝑅 ) ‘ 𝑋 ) ) = 1 ) |
| 12 | 10 11 | eqtrd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ) → ( 𝑋 / 𝑋 ) = 1 ) |