This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The N -th derivative of a real function is real. (Contributed by Mario Carneiro, 1-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvnfre | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ∧ 𝑁 ∈ ℕ0 ) → ( ( ℝ D𝑛 𝐹 ) ‘ 𝑁 ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑁 ) ⟶ ℝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 | ⊢ ( 𝑥 = 0 → ( ( ℝ D𝑛 𝐹 ) ‘ 𝑥 ) = ( ( ℝ D𝑛 𝐹 ) ‘ 0 ) ) | |
| 2 | 1 | dmeqd | ⊢ ( 𝑥 = 0 → dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑥 ) = dom ( ( ℝ D𝑛 𝐹 ) ‘ 0 ) ) |
| 3 | 1 2 | feq12d | ⊢ ( 𝑥 = 0 → ( ( ( ℝ D𝑛 𝐹 ) ‘ 𝑥 ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑥 ) ⟶ ℝ ↔ ( ( ℝ D𝑛 𝐹 ) ‘ 0 ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ 0 ) ⟶ ℝ ) ) |
| 4 | 3 | imbi2d | ⊢ ( 𝑥 = 0 → ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) → ( ( ℝ D𝑛 𝐹 ) ‘ 𝑥 ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑥 ) ⟶ ℝ ) ↔ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) → ( ( ℝ D𝑛 𝐹 ) ‘ 0 ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ 0 ) ⟶ ℝ ) ) ) |
| 5 | fveq2 | ⊢ ( 𝑥 = 𝑛 → ( ( ℝ D𝑛 𝐹 ) ‘ 𝑥 ) = ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) ) | |
| 6 | 5 | dmeqd | ⊢ ( 𝑥 = 𝑛 → dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑥 ) = dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) ) |
| 7 | 5 6 | feq12d | ⊢ ( 𝑥 = 𝑛 → ( ( ( ℝ D𝑛 𝐹 ) ‘ 𝑥 ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑥 ) ⟶ ℝ ↔ ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) ⟶ ℝ ) ) |
| 8 | 7 | imbi2d | ⊢ ( 𝑥 = 𝑛 → ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) → ( ( ℝ D𝑛 𝐹 ) ‘ 𝑥 ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑥 ) ⟶ ℝ ) ↔ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) → ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) ⟶ ℝ ) ) ) |
| 9 | fveq2 | ⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ( ℝ D𝑛 𝐹 ) ‘ 𝑥 ) = ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) | |
| 10 | 9 | dmeqd | ⊢ ( 𝑥 = ( 𝑛 + 1 ) → dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑥 ) = dom ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) |
| 11 | 9 10 | feq12d | ⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ( ( ℝ D𝑛 𝐹 ) ‘ 𝑥 ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑥 ) ⟶ ℝ ↔ ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) ⟶ ℝ ) ) |
| 12 | 11 | imbi2d | ⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) → ( ( ℝ D𝑛 𝐹 ) ‘ 𝑥 ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑥 ) ⟶ ℝ ) ↔ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) → ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) ⟶ ℝ ) ) ) |
| 13 | fveq2 | ⊢ ( 𝑥 = 𝑁 → ( ( ℝ D𝑛 𝐹 ) ‘ 𝑥 ) = ( ( ℝ D𝑛 𝐹 ) ‘ 𝑁 ) ) | |
| 14 | 13 | dmeqd | ⊢ ( 𝑥 = 𝑁 → dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑥 ) = dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑁 ) ) |
| 15 | 13 14 | feq12d | ⊢ ( 𝑥 = 𝑁 → ( ( ( ℝ D𝑛 𝐹 ) ‘ 𝑥 ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑥 ) ⟶ ℝ ↔ ( ( ℝ D𝑛 𝐹 ) ‘ 𝑁 ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑁 ) ⟶ ℝ ) ) |
| 16 | 15 | imbi2d | ⊢ ( 𝑥 = 𝑁 → ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) → ( ( ℝ D𝑛 𝐹 ) ‘ 𝑥 ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑥 ) ⟶ ℝ ) ↔ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) → ( ( ℝ D𝑛 𝐹 ) ‘ 𝑁 ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑁 ) ⟶ ℝ ) ) ) |
| 17 | simpl | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) → 𝐹 : 𝐴 ⟶ ℝ ) | |
| 18 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 19 | fss | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ ℝ ⊆ ℂ ) → 𝐹 : 𝐴 ⟶ ℂ ) | |
| 20 | 18 19 | mpan2 | ⊢ ( 𝐹 : 𝐴 ⟶ ℝ → 𝐹 : 𝐴 ⟶ ℂ ) |
| 21 | cnex | ⊢ ℂ ∈ V | |
| 22 | reex | ⊢ ℝ ∈ V | |
| 23 | elpm2r | ⊢ ( ( ( ℂ ∈ V ∧ ℝ ∈ V ) ∧ ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℝ ) ) → 𝐹 ∈ ( ℂ ↑pm ℝ ) ) | |
| 24 | 21 22 23 | mpanl12 | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℝ ) → 𝐹 ∈ ( ℂ ↑pm ℝ ) ) |
| 25 | 20 24 | sylan | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) → 𝐹 ∈ ( ℂ ↑pm ℝ ) ) |
| 26 | dvn0 | ⊢ ( ( ℝ ⊆ ℂ ∧ 𝐹 ∈ ( ℂ ↑pm ℝ ) ) → ( ( ℝ D𝑛 𝐹 ) ‘ 0 ) = 𝐹 ) | |
| 27 | 18 25 26 | sylancr | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) → ( ( ℝ D𝑛 𝐹 ) ‘ 0 ) = 𝐹 ) |
| 28 | 27 | dmeqd | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) → dom ( ( ℝ D𝑛 𝐹 ) ‘ 0 ) = dom 𝐹 ) |
| 29 | fdm | ⊢ ( 𝐹 : 𝐴 ⟶ ℝ → dom 𝐹 = 𝐴 ) | |
| 30 | 29 | adantr | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) → dom 𝐹 = 𝐴 ) |
| 31 | 28 30 | eqtrd | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) → dom ( ( ℝ D𝑛 𝐹 ) ‘ 0 ) = 𝐴 ) |
| 32 | 27 31 | feq12d | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) → ( ( ( ℝ D𝑛 𝐹 ) ‘ 0 ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ 0 ) ⟶ ℝ ↔ 𝐹 : 𝐴 ⟶ ℝ ) ) |
| 33 | 17 32 | mpbird | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) → ( ( ℝ D𝑛 𝐹 ) ‘ 0 ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ 0 ) ⟶ ℝ ) |
| 34 | simprr | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) ∧ ( 𝑛 ∈ ℕ0 ∧ ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) ⟶ ℝ ) ) → ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) ⟶ ℝ ) | |
| 35 | 22 | prid1 | ⊢ ℝ ∈ { ℝ , ℂ } |
| 36 | simprl | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) ∧ ( 𝑛 ∈ ℕ0 ∧ ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) ⟶ ℝ ) ) → 𝑛 ∈ ℕ0 ) | |
| 37 | dvnbss | ⊢ ( ( ℝ ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℝ ) ∧ 𝑛 ∈ ℕ0 ) → dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) ⊆ dom 𝐹 ) | |
| 38 | 35 25 36 37 | mp3an2ani | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) ∧ ( 𝑛 ∈ ℕ0 ∧ ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) ⟶ ℝ ) ) → dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) ⊆ dom 𝐹 ) |
| 39 | 30 | adantr | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) ∧ ( 𝑛 ∈ ℕ0 ∧ ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) ⟶ ℝ ) ) → dom 𝐹 = 𝐴 ) |
| 40 | 38 39 | sseqtrd | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) ∧ ( 𝑛 ∈ ℕ0 ∧ ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) ⟶ ℝ ) ) → dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) ⊆ 𝐴 ) |
| 41 | simplr | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) ∧ ( 𝑛 ∈ ℕ0 ∧ ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) ⟶ ℝ ) ) → 𝐴 ⊆ ℝ ) | |
| 42 | 40 41 | sstrd | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) ∧ ( 𝑛 ∈ ℕ0 ∧ ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) ⟶ ℝ ) ) → dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) ⊆ ℝ ) |
| 43 | dvfre | ⊢ ( ( ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) ⟶ ℝ ∧ dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) ⊆ ℝ ) → ( ℝ D ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) ) : dom ( ℝ D ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) ) ⟶ ℝ ) | |
| 44 | 34 42 43 | syl2anc | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) ∧ ( 𝑛 ∈ ℕ0 ∧ ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) ⟶ ℝ ) ) → ( ℝ D ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) ) : dom ( ℝ D ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) ) ⟶ ℝ ) |
| 45 | dvnp1 | ⊢ ( ( ℝ ⊆ ℂ ∧ 𝐹 ∈ ( ℂ ↑pm ℝ ) ∧ 𝑛 ∈ ℕ0 ) → ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( ℝ D ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) ) ) | |
| 46 | 18 25 36 45 | mp3an2ani | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) ∧ ( 𝑛 ∈ ℕ0 ∧ ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) ⟶ ℝ ) ) → ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( ℝ D ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) ) ) |
| 47 | 46 | dmeqd | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) ∧ ( 𝑛 ∈ ℕ0 ∧ ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) ⟶ ℝ ) ) → dom ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom ( ℝ D ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) ) ) |
| 48 | 46 47 | feq12d | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) ∧ ( 𝑛 ∈ ℕ0 ∧ ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) ⟶ ℝ ) ) → ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) ⟶ ℝ ↔ ( ℝ D ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) ) : dom ( ℝ D ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) ) ⟶ ℝ ) ) |
| 49 | 44 48 | mpbird | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) ∧ ( 𝑛 ∈ ℕ0 ∧ ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) ⟶ ℝ ) ) → ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) ⟶ ℝ ) |
| 50 | 49 | expr | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) ∧ 𝑛 ∈ ℕ0 ) → ( ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) ⟶ ℝ → ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) ⟶ ℝ ) ) |
| 51 | 50 | expcom | ⊢ ( 𝑛 ∈ ℕ0 → ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) → ( ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) ⟶ ℝ → ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) ⟶ ℝ ) ) ) |
| 52 | 51 | a2d | ⊢ ( 𝑛 ∈ ℕ0 → ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) → ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) ⟶ ℝ ) → ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) → ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) ⟶ ℝ ) ) ) |
| 53 | 4 8 12 16 33 52 | nn0ind | ⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) → ( ( ℝ D𝑛 𝐹 ) ‘ 𝑁 ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑁 ) ⟶ ℝ ) ) |
| 54 | 53 | com12 | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) → ( 𝑁 ∈ ℕ0 → ( ( ℝ D𝑛 𝐹 ) ‘ 𝑁 ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑁 ) ⟶ ℝ ) ) |
| 55 | 54 | 3impia | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ∧ 𝑁 ∈ ℕ0 ) → ( ( ℝ D𝑛 𝐹 ) ‘ 𝑁 ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑁 ) ⟶ ℝ ) |