This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The N -th derivative of a real function is real. (Contributed by Mario Carneiro, 1-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvnfre | |- ( ( F : A --> RR /\ A C_ RR /\ N e. NN0 ) -> ( ( RR Dn F ) ` N ) : dom ( ( RR Dn F ) ` N ) --> RR ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 | |- ( x = 0 -> ( ( RR Dn F ) ` x ) = ( ( RR Dn F ) ` 0 ) ) |
|
| 2 | 1 | dmeqd | |- ( x = 0 -> dom ( ( RR Dn F ) ` x ) = dom ( ( RR Dn F ) ` 0 ) ) |
| 3 | 1 2 | feq12d | |- ( x = 0 -> ( ( ( RR Dn F ) ` x ) : dom ( ( RR Dn F ) ` x ) --> RR <-> ( ( RR Dn F ) ` 0 ) : dom ( ( RR Dn F ) ` 0 ) --> RR ) ) |
| 4 | 3 | imbi2d | |- ( x = 0 -> ( ( ( F : A --> RR /\ A C_ RR ) -> ( ( RR Dn F ) ` x ) : dom ( ( RR Dn F ) ` x ) --> RR ) <-> ( ( F : A --> RR /\ A C_ RR ) -> ( ( RR Dn F ) ` 0 ) : dom ( ( RR Dn F ) ` 0 ) --> RR ) ) ) |
| 5 | fveq2 | |- ( x = n -> ( ( RR Dn F ) ` x ) = ( ( RR Dn F ) ` n ) ) |
|
| 6 | 5 | dmeqd | |- ( x = n -> dom ( ( RR Dn F ) ` x ) = dom ( ( RR Dn F ) ` n ) ) |
| 7 | 5 6 | feq12d | |- ( x = n -> ( ( ( RR Dn F ) ` x ) : dom ( ( RR Dn F ) ` x ) --> RR <-> ( ( RR Dn F ) ` n ) : dom ( ( RR Dn F ) ` n ) --> RR ) ) |
| 8 | 7 | imbi2d | |- ( x = n -> ( ( ( F : A --> RR /\ A C_ RR ) -> ( ( RR Dn F ) ` x ) : dom ( ( RR Dn F ) ` x ) --> RR ) <-> ( ( F : A --> RR /\ A C_ RR ) -> ( ( RR Dn F ) ` n ) : dom ( ( RR Dn F ) ` n ) --> RR ) ) ) |
| 9 | fveq2 | |- ( x = ( n + 1 ) -> ( ( RR Dn F ) ` x ) = ( ( RR Dn F ) ` ( n + 1 ) ) ) |
|
| 10 | 9 | dmeqd | |- ( x = ( n + 1 ) -> dom ( ( RR Dn F ) ` x ) = dom ( ( RR Dn F ) ` ( n + 1 ) ) ) |
| 11 | 9 10 | feq12d | |- ( x = ( n + 1 ) -> ( ( ( RR Dn F ) ` x ) : dom ( ( RR Dn F ) ` x ) --> RR <-> ( ( RR Dn F ) ` ( n + 1 ) ) : dom ( ( RR Dn F ) ` ( n + 1 ) ) --> RR ) ) |
| 12 | 11 | imbi2d | |- ( x = ( n + 1 ) -> ( ( ( F : A --> RR /\ A C_ RR ) -> ( ( RR Dn F ) ` x ) : dom ( ( RR Dn F ) ` x ) --> RR ) <-> ( ( F : A --> RR /\ A C_ RR ) -> ( ( RR Dn F ) ` ( n + 1 ) ) : dom ( ( RR Dn F ) ` ( n + 1 ) ) --> RR ) ) ) |
| 13 | fveq2 | |- ( x = N -> ( ( RR Dn F ) ` x ) = ( ( RR Dn F ) ` N ) ) |
|
| 14 | 13 | dmeqd | |- ( x = N -> dom ( ( RR Dn F ) ` x ) = dom ( ( RR Dn F ) ` N ) ) |
| 15 | 13 14 | feq12d | |- ( x = N -> ( ( ( RR Dn F ) ` x ) : dom ( ( RR Dn F ) ` x ) --> RR <-> ( ( RR Dn F ) ` N ) : dom ( ( RR Dn F ) ` N ) --> RR ) ) |
| 16 | 15 | imbi2d | |- ( x = N -> ( ( ( F : A --> RR /\ A C_ RR ) -> ( ( RR Dn F ) ` x ) : dom ( ( RR Dn F ) ` x ) --> RR ) <-> ( ( F : A --> RR /\ A C_ RR ) -> ( ( RR Dn F ) ` N ) : dom ( ( RR Dn F ) ` N ) --> RR ) ) ) |
| 17 | simpl | |- ( ( F : A --> RR /\ A C_ RR ) -> F : A --> RR ) |
|
| 18 | ax-resscn | |- RR C_ CC |
|
| 19 | fss | |- ( ( F : A --> RR /\ RR C_ CC ) -> F : A --> CC ) |
|
| 20 | 18 19 | mpan2 | |- ( F : A --> RR -> F : A --> CC ) |
| 21 | cnex | |- CC e. _V |
|
| 22 | reex | |- RR e. _V |
|
| 23 | elpm2r | |- ( ( ( CC e. _V /\ RR e. _V ) /\ ( F : A --> CC /\ A C_ RR ) ) -> F e. ( CC ^pm RR ) ) |
|
| 24 | 21 22 23 | mpanl12 | |- ( ( F : A --> CC /\ A C_ RR ) -> F e. ( CC ^pm RR ) ) |
| 25 | 20 24 | sylan | |- ( ( F : A --> RR /\ A C_ RR ) -> F e. ( CC ^pm RR ) ) |
| 26 | dvn0 | |- ( ( RR C_ CC /\ F e. ( CC ^pm RR ) ) -> ( ( RR Dn F ) ` 0 ) = F ) |
|
| 27 | 18 25 26 | sylancr | |- ( ( F : A --> RR /\ A C_ RR ) -> ( ( RR Dn F ) ` 0 ) = F ) |
| 28 | 27 | dmeqd | |- ( ( F : A --> RR /\ A C_ RR ) -> dom ( ( RR Dn F ) ` 0 ) = dom F ) |
| 29 | fdm | |- ( F : A --> RR -> dom F = A ) |
|
| 30 | 29 | adantr | |- ( ( F : A --> RR /\ A C_ RR ) -> dom F = A ) |
| 31 | 28 30 | eqtrd | |- ( ( F : A --> RR /\ A C_ RR ) -> dom ( ( RR Dn F ) ` 0 ) = A ) |
| 32 | 27 31 | feq12d | |- ( ( F : A --> RR /\ A C_ RR ) -> ( ( ( RR Dn F ) ` 0 ) : dom ( ( RR Dn F ) ` 0 ) --> RR <-> F : A --> RR ) ) |
| 33 | 17 32 | mpbird | |- ( ( F : A --> RR /\ A C_ RR ) -> ( ( RR Dn F ) ` 0 ) : dom ( ( RR Dn F ) ` 0 ) --> RR ) |
| 34 | simprr | |- ( ( ( F : A --> RR /\ A C_ RR ) /\ ( n e. NN0 /\ ( ( RR Dn F ) ` n ) : dom ( ( RR Dn F ) ` n ) --> RR ) ) -> ( ( RR Dn F ) ` n ) : dom ( ( RR Dn F ) ` n ) --> RR ) |
|
| 35 | 22 | prid1 | |- RR e. { RR , CC } |
| 36 | simprl | |- ( ( ( F : A --> RR /\ A C_ RR ) /\ ( n e. NN0 /\ ( ( RR Dn F ) ` n ) : dom ( ( RR Dn F ) ` n ) --> RR ) ) -> n e. NN0 ) |
|
| 37 | dvnbss | |- ( ( RR e. { RR , CC } /\ F e. ( CC ^pm RR ) /\ n e. NN0 ) -> dom ( ( RR Dn F ) ` n ) C_ dom F ) |
|
| 38 | 35 25 36 37 | mp3an2ani | |- ( ( ( F : A --> RR /\ A C_ RR ) /\ ( n e. NN0 /\ ( ( RR Dn F ) ` n ) : dom ( ( RR Dn F ) ` n ) --> RR ) ) -> dom ( ( RR Dn F ) ` n ) C_ dom F ) |
| 39 | 30 | adantr | |- ( ( ( F : A --> RR /\ A C_ RR ) /\ ( n e. NN0 /\ ( ( RR Dn F ) ` n ) : dom ( ( RR Dn F ) ` n ) --> RR ) ) -> dom F = A ) |
| 40 | 38 39 | sseqtrd | |- ( ( ( F : A --> RR /\ A C_ RR ) /\ ( n e. NN0 /\ ( ( RR Dn F ) ` n ) : dom ( ( RR Dn F ) ` n ) --> RR ) ) -> dom ( ( RR Dn F ) ` n ) C_ A ) |
| 41 | simplr | |- ( ( ( F : A --> RR /\ A C_ RR ) /\ ( n e. NN0 /\ ( ( RR Dn F ) ` n ) : dom ( ( RR Dn F ) ` n ) --> RR ) ) -> A C_ RR ) |
|
| 42 | 40 41 | sstrd | |- ( ( ( F : A --> RR /\ A C_ RR ) /\ ( n e. NN0 /\ ( ( RR Dn F ) ` n ) : dom ( ( RR Dn F ) ` n ) --> RR ) ) -> dom ( ( RR Dn F ) ` n ) C_ RR ) |
| 43 | dvfre | |- ( ( ( ( RR Dn F ) ` n ) : dom ( ( RR Dn F ) ` n ) --> RR /\ dom ( ( RR Dn F ) ` n ) C_ RR ) -> ( RR _D ( ( RR Dn F ) ` n ) ) : dom ( RR _D ( ( RR Dn F ) ` n ) ) --> RR ) |
|
| 44 | 34 42 43 | syl2anc | |- ( ( ( F : A --> RR /\ A C_ RR ) /\ ( n e. NN0 /\ ( ( RR Dn F ) ` n ) : dom ( ( RR Dn F ) ` n ) --> RR ) ) -> ( RR _D ( ( RR Dn F ) ` n ) ) : dom ( RR _D ( ( RR Dn F ) ` n ) ) --> RR ) |
| 45 | dvnp1 | |- ( ( RR C_ CC /\ F e. ( CC ^pm RR ) /\ n e. NN0 ) -> ( ( RR Dn F ) ` ( n + 1 ) ) = ( RR _D ( ( RR Dn F ) ` n ) ) ) |
|
| 46 | 18 25 36 45 | mp3an2ani | |- ( ( ( F : A --> RR /\ A C_ RR ) /\ ( n e. NN0 /\ ( ( RR Dn F ) ` n ) : dom ( ( RR Dn F ) ` n ) --> RR ) ) -> ( ( RR Dn F ) ` ( n + 1 ) ) = ( RR _D ( ( RR Dn F ) ` n ) ) ) |
| 47 | 46 | dmeqd | |- ( ( ( F : A --> RR /\ A C_ RR ) /\ ( n e. NN0 /\ ( ( RR Dn F ) ` n ) : dom ( ( RR Dn F ) ` n ) --> RR ) ) -> dom ( ( RR Dn F ) ` ( n + 1 ) ) = dom ( RR _D ( ( RR Dn F ) ` n ) ) ) |
| 48 | 46 47 | feq12d | |- ( ( ( F : A --> RR /\ A C_ RR ) /\ ( n e. NN0 /\ ( ( RR Dn F ) ` n ) : dom ( ( RR Dn F ) ` n ) --> RR ) ) -> ( ( ( RR Dn F ) ` ( n + 1 ) ) : dom ( ( RR Dn F ) ` ( n + 1 ) ) --> RR <-> ( RR _D ( ( RR Dn F ) ` n ) ) : dom ( RR _D ( ( RR Dn F ) ` n ) ) --> RR ) ) |
| 49 | 44 48 | mpbird | |- ( ( ( F : A --> RR /\ A C_ RR ) /\ ( n e. NN0 /\ ( ( RR Dn F ) ` n ) : dom ( ( RR Dn F ) ` n ) --> RR ) ) -> ( ( RR Dn F ) ` ( n + 1 ) ) : dom ( ( RR Dn F ) ` ( n + 1 ) ) --> RR ) |
| 50 | 49 | expr | |- ( ( ( F : A --> RR /\ A C_ RR ) /\ n e. NN0 ) -> ( ( ( RR Dn F ) ` n ) : dom ( ( RR Dn F ) ` n ) --> RR -> ( ( RR Dn F ) ` ( n + 1 ) ) : dom ( ( RR Dn F ) ` ( n + 1 ) ) --> RR ) ) |
| 51 | 50 | expcom | |- ( n e. NN0 -> ( ( F : A --> RR /\ A C_ RR ) -> ( ( ( RR Dn F ) ` n ) : dom ( ( RR Dn F ) ` n ) --> RR -> ( ( RR Dn F ) ` ( n + 1 ) ) : dom ( ( RR Dn F ) ` ( n + 1 ) ) --> RR ) ) ) |
| 52 | 51 | a2d | |- ( n e. NN0 -> ( ( ( F : A --> RR /\ A C_ RR ) -> ( ( RR Dn F ) ` n ) : dom ( ( RR Dn F ) ` n ) --> RR ) -> ( ( F : A --> RR /\ A C_ RR ) -> ( ( RR Dn F ) ` ( n + 1 ) ) : dom ( ( RR Dn F ) ` ( n + 1 ) ) --> RR ) ) ) |
| 53 | 4 8 12 16 33 52 | nn0ind | |- ( N e. NN0 -> ( ( F : A --> RR /\ A C_ RR ) -> ( ( RR Dn F ) ` N ) : dom ( ( RR Dn F ) ` N ) --> RR ) ) |
| 54 | 53 | com12 | |- ( ( F : A --> RR /\ A C_ RR ) -> ( N e. NN0 -> ( ( RR Dn F ) ` N ) : dom ( ( RR Dn F ) ` N ) --> RR ) ) |
| 55 | 54 | 3impia | |- ( ( F : A --> RR /\ A C_ RR /\ N e. NN0 ) -> ( ( RR Dn F ) ` N ) : dom ( ( RR Dn F ) ` N ) --> RR ) |