This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The N -th derivative of the M -th derivative of F is the same as the M + N -th derivative of F . (Contributed by Mario Carneiro, 11-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvnadd | |- ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ ( M e. NN0 /\ N e. NN0 ) ) -> ( ( S Dn ( ( S Dn F ) ` M ) ) ` N ) = ( ( S Dn F ) ` ( M + N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 | |- ( n = 0 -> ( ( S Dn ( ( S Dn F ) ` M ) ) ` n ) = ( ( S Dn ( ( S Dn F ) ` M ) ) ` 0 ) ) |
|
| 2 | oveq2 | |- ( n = 0 -> ( M + n ) = ( M + 0 ) ) |
|
| 3 | 2 | fveq2d | |- ( n = 0 -> ( ( S Dn F ) ` ( M + n ) ) = ( ( S Dn F ) ` ( M + 0 ) ) ) |
| 4 | 1 3 | eqeq12d | |- ( n = 0 -> ( ( ( S Dn ( ( S Dn F ) ` M ) ) ` n ) = ( ( S Dn F ) ` ( M + n ) ) <-> ( ( S Dn ( ( S Dn F ) ` M ) ) ` 0 ) = ( ( S Dn F ) ` ( M + 0 ) ) ) ) |
| 5 | 4 | imbi2d | |- ( n = 0 -> ( ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ M e. NN0 ) -> ( ( S Dn ( ( S Dn F ) ` M ) ) ` n ) = ( ( S Dn F ) ` ( M + n ) ) ) <-> ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ M e. NN0 ) -> ( ( S Dn ( ( S Dn F ) ` M ) ) ` 0 ) = ( ( S Dn F ) ` ( M + 0 ) ) ) ) ) |
| 6 | fveq2 | |- ( n = k -> ( ( S Dn ( ( S Dn F ) ` M ) ) ` n ) = ( ( S Dn ( ( S Dn F ) ` M ) ) ` k ) ) |
|
| 7 | oveq2 | |- ( n = k -> ( M + n ) = ( M + k ) ) |
|
| 8 | 7 | fveq2d | |- ( n = k -> ( ( S Dn F ) ` ( M + n ) ) = ( ( S Dn F ) ` ( M + k ) ) ) |
| 9 | 6 8 | eqeq12d | |- ( n = k -> ( ( ( S Dn ( ( S Dn F ) ` M ) ) ` n ) = ( ( S Dn F ) ` ( M + n ) ) <-> ( ( S Dn ( ( S Dn F ) ` M ) ) ` k ) = ( ( S Dn F ) ` ( M + k ) ) ) ) |
| 10 | 9 | imbi2d | |- ( n = k -> ( ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ M e. NN0 ) -> ( ( S Dn ( ( S Dn F ) ` M ) ) ` n ) = ( ( S Dn F ) ` ( M + n ) ) ) <-> ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ M e. NN0 ) -> ( ( S Dn ( ( S Dn F ) ` M ) ) ` k ) = ( ( S Dn F ) ` ( M + k ) ) ) ) ) |
| 11 | fveq2 | |- ( n = ( k + 1 ) -> ( ( S Dn ( ( S Dn F ) ` M ) ) ` n ) = ( ( S Dn ( ( S Dn F ) ` M ) ) ` ( k + 1 ) ) ) |
|
| 12 | oveq2 | |- ( n = ( k + 1 ) -> ( M + n ) = ( M + ( k + 1 ) ) ) |
|
| 13 | 12 | fveq2d | |- ( n = ( k + 1 ) -> ( ( S Dn F ) ` ( M + n ) ) = ( ( S Dn F ) ` ( M + ( k + 1 ) ) ) ) |
| 14 | 11 13 | eqeq12d | |- ( n = ( k + 1 ) -> ( ( ( S Dn ( ( S Dn F ) ` M ) ) ` n ) = ( ( S Dn F ) ` ( M + n ) ) <-> ( ( S Dn ( ( S Dn F ) ` M ) ) ` ( k + 1 ) ) = ( ( S Dn F ) ` ( M + ( k + 1 ) ) ) ) ) |
| 15 | 14 | imbi2d | |- ( n = ( k + 1 ) -> ( ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ M e. NN0 ) -> ( ( S Dn ( ( S Dn F ) ` M ) ) ` n ) = ( ( S Dn F ) ` ( M + n ) ) ) <-> ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ M e. NN0 ) -> ( ( S Dn ( ( S Dn F ) ` M ) ) ` ( k + 1 ) ) = ( ( S Dn F ) ` ( M + ( k + 1 ) ) ) ) ) ) |
| 16 | fveq2 | |- ( n = N -> ( ( S Dn ( ( S Dn F ) ` M ) ) ` n ) = ( ( S Dn ( ( S Dn F ) ` M ) ) ` N ) ) |
|
| 17 | oveq2 | |- ( n = N -> ( M + n ) = ( M + N ) ) |
|
| 18 | 17 | fveq2d | |- ( n = N -> ( ( S Dn F ) ` ( M + n ) ) = ( ( S Dn F ) ` ( M + N ) ) ) |
| 19 | 16 18 | eqeq12d | |- ( n = N -> ( ( ( S Dn ( ( S Dn F ) ` M ) ) ` n ) = ( ( S Dn F ) ` ( M + n ) ) <-> ( ( S Dn ( ( S Dn F ) ` M ) ) ` N ) = ( ( S Dn F ) ` ( M + N ) ) ) ) |
| 20 | 19 | imbi2d | |- ( n = N -> ( ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ M e. NN0 ) -> ( ( S Dn ( ( S Dn F ) ` M ) ) ` n ) = ( ( S Dn F ) ` ( M + n ) ) ) <-> ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ M e. NN0 ) -> ( ( S Dn ( ( S Dn F ) ` M ) ) ` N ) = ( ( S Dn F ) ` ( M + N ) ) ) ) ) |
| 21 | recnprss | |- ( S e. { RR , CC } -> S C_ CC ) |
|
| 22 | 21 | ad2antrr | |- ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ M e. NN0 ) -> S C_ CC ) |
| 23 | ssidd | |- ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) -> CC C_ CC ) |
|
| 24 | cnex | |- CC e. _V |
|
| 25 | elpm2g | |- ( ( CC e. _V /\ S e. { RR , CC } ) -> ( F e. ( CC ^pm S ) <-> ( F : dom F --> CC /\ dom F C_ S ) ) ) |
|
| 26 | 24 25 | mpan | |- ( S e. { RR , CC } -> ( F e. ( CC ^pm S ) <-> ( F : dom F --> CC /\ dom F C_ S ) ) ) |
| 27 | 26 | simplbda | |- ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) -> dom F C_ S ) |
| 28 | 24 | a1i | |- ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) -> CC e. _V ) |
| 29 | simpl | |- ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) -> S e. { RR , CC } ) |
|
| 30 | pmss12g | |- ( ( ( CC C_ CC /\ dom F C_ S ) /\ ( CC e. _V /\ S e. { RR , CC } ) ) -> ( CC ^pm dom F ) C_ ( CC ^pm S ) ) |
|
| 31 | 23 27 28 29 30 | syl22anc | |- ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) -> ( CC ^pm dom F ) C_ ( CC ^pm S ) ) |
| 32 | 31 | adantr | |- ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ M e. NN0 ) -> ( CC ^pm dom F ) C_ ( CC ^pm S ) ) |
| 33 | dvnff | |- ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) -> ( S Dn F ) : NN0 --> ( CC ^pm dom F ) ) |
|
| 34 | 33 | ffvelcdmda | |- ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ M e. NN0 ) -> ( ( S Dn F ) ` M ) e. ( CC ^pm dom F ) ) |
| 35 | 32 34 | sseldd | |- ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ M e. NN0 ) -> ( ( S Dn F ) ` M ) e. ( CC ^pm S ) ) |
| 36 | dvn0 | |- ( ( S C_ CC /\ ( ( S Dn F ) ` M ) e. ( CC ^pm S ) ) -> ( ( S Dn ( ( S Dn F ) ` M ) ) ` 0 ) = ( ( S Dn F ) ` M ) ) |
|
| 37 | 22 35 36 | syl2anc | |- ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ M e. NN0 ) -> ( ( S Dn ( ( S Dn F ) ` M ) ) ` 0 ) = ( ( S Dn F ) ` M ) ) |
| 38 | nn0cn | |- ( M e. NN0 -> M e. CC ) |
|
| 39 | 38 | adantl | |- ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ M e. NN0 ) -> M e. CC ) |
| 40 | 39 | addridd | |- ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ M e. NN0 ) -> ( M + 0 ) = M ) |
| 41 | 40 | fveq2d | |- ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ M e. NN0 ) -> ( ( S Dn F ) ` ( M + 0 ) ) = ( ( S Dn F ) ` M ) ) |
| 42 | 37 41 | eqtr4d | |- ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ M e. NN0 ) -> ( ( S Dn ( ( S Dn F ) ` M ) ) ` 0 ) = ( ( S Dn F ) ` ( M + 0 ) ) ) |
| 43 | oveq2 | |- ( ( ( S Dn ( ( S Dn F ) ` M ) ) ` k ) = ( ( S Dn F ) ` ( M + k ) ) -> ( S _D ( ( S Dn ( ( S Dn F ) ` M ) ) ` k ) ) = ( S _D ( ( S Dn F ) ` ( M + k ) ) ) ) |
|
| 44 | 22 | adantr | |- ( ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ M e. NN0 ) /\ k e. NN0 ) -> S C_ CC ) |
| 45 | 35 | adantr | |- ( ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ M e. NN0 ) /\ k e. NN0 ) -> ( ( S Dn F ) ` M ) e. ( CC ^pm S ) ) |
| 46 | simpr | |- ( ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ M e. NN0 ) /\ k e. NN0 ) -> k e. NN0 ) |
|
| 47 | dvnp1 | |- ( ( S C_ CC /\ ( ( S Dn F ) ` M ) e. ( CC ^pm S ) /\ k e. NN0 ) -> ( ( S Dn ( ( S Dn F ) ` M ) ) ` ( k + 1 ) ) = ( S _D ( ( S Dn ( ( S Dn F ) ` M ) ) ` k ) ) ) |
|
| 48 | 44 45 46 47 | syl3anc | |- ( ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ M e. NN0 ) /\ k e. NN0 ) -> ( ( S Dn ( ( S Dn F ) ` M ) ) ` ( k + 1 ) ) = ( S _D ( ( S Dn ( ( S Dn F ) ` M ) ) ` k ) ) ) |
| 49 | 39 | adantr | |- ( ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ M e. NN0 ) /\ k e. NN0 ) -> M e. CC ) |
| 50 | nn0cn | |- ( k e. NN0 -> k e. CC ) |
|
| 51 | 50 | adantl | |- ( ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ M e. NN0 ) /\ k e. NN0 ) -> k e. CC ) |
| 52 | 1cnd | |- ( ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ M e. NN0 ) /\ k e. NN0 ) -> 1 e. CC ) |
|
| 53 | 49 51 52 | addassd | |- ( ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ M e. NN0 ) /\ k e. NN0 ) -> ( ( M + k ) + 1 ) = ( M + ( k + 1 ) ) ) |
| 54 | 53 | fveq2d | |- ( ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ M e. NN0 ) /\ k e. NN0 ) -> ( ( S Dn F ) ` ( ( M + k ) + 1 ) ) = ( ( S Dn F ) ` ( M + ( k + 1 ) ) ) ) |
| 55 | simpllr | |- ( ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ M e. NN0 ) /\ k e. NN0 ) -> F e. ( CC ^pm S ) ) |
|
| 56 | nn0addcl | |- ( ( M e. NN0 /\ k e. NN0 ) -> ( M + k ) e. NN0 ) |
|
| 57 | 56 | adantll | |- ( ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ M e. NN0 ) /\ k e. NN0 ) -> ( M + k ) e. NN0 ) |
| 58 | dvnp1 | |- ( ( S C_ CC /\ F e. ( CC ^pm S ) /\ ( M + k ) e. NN0 ) -> ( ( S Dn F ) ` ( ( M + k ) + 1 ) ) = ( S _D ( ( S Dn F ) ` ( M + k ) ) ) ) |
|
| 59 | 44 55 57 58 | syl3anc | |- ( ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ M e. NN0 ) /\ k e. NN0 ) -> ( ( S Dn F ) ` ( ( M + k ) + 1 ) ) = ( S _D ( ( S Dn F ) ` ( M + k ) ) ) ) |
| 60 | 54 59 | eqtr3d | |- ( ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ M e. NN0 ) /\ k e. NN0 ) -> ( ( S Dn F ) ` ( M + ( k + 1 ) ) ) = ( S _D ( ( S Dn F ) ` ( M + k ) ) ) ) |
| 61 | 48 60 | eqeq12d | |- ( ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ M e. NN0 ) /\ k e. NN0 ) -> ( ( ( S Dn ( ( S Dn F ) ` M ) ) ` ( k + 1 ) ) = ( ( S Dn F ) ` ( M + ( k + 1 ) ) ) <-> ( S _D ( ( S Dn ( ( S Dn F ) ` M ) ) ` k ) ) = ( S _D ( ( S Dn F ) ` ( M + k ) ) ) ) ) |
| 62 | 43 61 | imbitrrid | |- ( ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ M e. NN0 ) /\ k e. NN0 ) -> ( ( ( S Dn ( ( S Dn F ) ` M ) ) ` k ) = ( ( S Dn F ) ` ( M + k ) ) -> ( ( S Dn ( ( S Dn F ) ` M ) ) ` ( k + 1 ) ) = ( ( S Dn F ) ` ( M + ( k + 1 ) ) ) ) ) |
| 63 | 62 | expcom | |- ( k e. NN0 -> ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ M e. NN0 ) -> ( ( ( S Dn ( ( S Dn F ) ` M ) ) ` k ) = ( ( S Dn F ) ` ( M + k ) ) -> ( ( S Dn ( ( S Dn F ) ` M ) ) ` ( k + 1 ) ) = ( ( S Dn F ) ` ( M + ( k + 1 ) ) ) ) ) ) |
| 64 | 63 | a2d | |- ( k e. NN0 -> ( ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ M e. NN0 ) -> ( ( S Dn ( ( S Dn F ) ` M ) ) ` k ) = ( ( S Dn F ) ` ( M + k ) ) ) -> ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ M e. NN0 ) -> ( ( S Dn ( ( S Dn F ) ` M ) ) ` ( k + 1 ) ) = ( ( S Dn F ) ` ( M + ( k + 1 ) ) ) ) ) ) |
| 65 | 5 10 15 20 42 64 | nn0ind | |- ( N e. NN0 -> ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ M e. NN0 ) -> ( ( S Dn ( ( S Dn F ) ` M ) ) ` N ) = ( ( S Dn F ) ` ( M + N ) ) ) ) |
| 66 | 65 | com12 | |- ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ M e. NN0 ) -> ( N e. NN0 -> ( ( S Dn ( ( S Dn F ) ` M ) ) ` N ) = ( ( S Dn F ) ` ( M + N ) ) ) ) |
| 67 | 66 | impr | |- ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ ( M e. NN0 /\ N e. NN0 ) ) -> ( ( S Dn ( ( S Dn F ) ` M ) ) ` N ) = ( ( S Dn F ) ` ( M + N ) ) ) |