This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The iterated derivative is a function. (Contributed by Mario Carneiro, 11-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvnff | ⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) → ( 𝑆 D𝑛 𝐹 ) : ℕ0 ⟶ ( ℂ ↑pm dom 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0uz | ⊢ ℕ0 = ( ℤ≥ ‘ 0 ) | |
| 2 | 0zd | ⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) → 0 ∈ ℤ ) | |
| 3 | fvconst2g | ⊢ ( ( 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ℕ0 × { 𝐹 } ) ‘ 𝑘 ) = 𝐹 ) | |
| 4 | 3 | adantll | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ℕ0 × { 𝐹 } ) ‘ 𝑘 ) = 𝐹 ) |
| 5 | dmexg | ⊢ ( 𝐹 ∈ ( ℂ ↑pm 𝑆 ) → dom 𝐹 ∈ V ) | |
| 6 | 5 | ad2antlr | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ 𝑘 ∈ ℕ0 ) → dom 𝐹 ∈ V ) |
| 7 | cnex | ⊢ ℂ ∈ V | |
| 8 | 7 | a1i | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ 𝑘 ∈ ℕ0 ) → ℂ ∈ V ) |
| 9 | elpm2g | ⊢ ( ( ℂ ∈ V ∧ 𝑆 ∈ { ℝ , ℂ } ) → ( 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ↔ ( 𝐹 : dom 𝐹 ⟶ ℂ ∧ dom 𝐹 ⊆ 𝑆 ) ) ) | |
| 10 | 7 9 | mpan | ⊢ ( 𝑆 ∈ { ℝ , ℂ } → ( 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ↔ ( 𝐹 : dom 𝐹 ⟶ ℂ ∧ dom 𝐹 ⊆ 𝑆 ) ) ) |
| 11 | 10 | biimpa | ⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) → ( 𝐹 : dom 𝐹 ⟶ ℂ ∧ dom 𝐹 ⊆ 𝑆 ) ) |
| 12 | 11 | simpld | ⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) → 𝐹 : dom 𝐹 ⟶ ℂ ) |
| 13 | 12 | adantr | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ 𝑘 ∈ ℕ0 ) → 𝐹 : dom 𝐹 ⟶ ℂ ) |
| 14 | fpmg | ⊢ ( ( dom 𝐹 ∈ V ∧ ℂ ∈ V ∧ 𝐹 : dom 𝐹 ⟶ ℂ ) → 𝐹 ∈ ( ℂ ↑pm dom 𝐹 ) ) | |
| 15 | 6 8 13 14 | syl3anc | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ 𝑘 ∈ ℕ0 ) → 𝐹 ∈ ( ℂ ↑pm dom 𝐹 ) ) |
| 16 | 4 15 | eqeltrd | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ℕ0 × { 𝐹 } ) ‘ 𝑘 ) ∈ ( ℂ ↑pm dom 𝐹 ) ) |
| 17 | vex | ⊢ 𝑘 ∈ V | |
| 18 | vex | ⊢ 𝑛 ∈ V | |
| 19 | 17 18 | opco1i | ⊢ ( 𝑘 ( ( 𝑥 ∈ V ↦ ( 𝑆 D 𝑥 ) ) ∘ 1st ) 𝑛 ) = ( ( 𝑥 ∈ V ↦ ( 𝑆 D 𝑥 ) ) ‘ 𝑘 ) |
| 20 | oveq2 | ⊢ ( 𝑥 = 𝑘 → ( 𝑆 D 𝑥 ) = ( 𝑆 D 𝑘 ) ) | |
| 21 | eqid | ⊢ ( 𝑥 ∈ V ↦ ( 𝑆 D 𝑥 ) ) = ( 𝑥 ∈ V ↦ ( 𝑆 D 𝑥 ) ) | |
| 22 | ovex | ⊢ ( 𝑆 D 𝑘 ) ∈ V | |
| 23 | 20 21 22 | fvmpt | ⊢ ( 𝑘 ∈ V → ( ( 𝑥 ∈ V ↦ ( 𝑆 D 𝑥 ) ) ‘ 𝑘 ) = ( 𝑆 D 𝑘 ) ) |
| 24 | 23 | elv | ⊢ ( ( 𝑥 ∈ V ↦ ( 𝑆 D 𝑥 ) ) ‘ 𝑘 ) = ( 𝑆 D 𝑘 ) |
| 25 | 19 24 | eqtri | ⊢ ( 𝑘 ( ( 𝑥 ∈ V ↦ ( 𝑆 D 𝑥 ) ) ∘ 1st ) 𝑛 ) = ( 𝑆 D 𝑘 ) |
| 26 | 7 | a1i | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ ( 𝑘 ∈ ( ℂ ↑pm dom 𝐹 ) ∧ 𝑛 ∈ ( ℂ ↑pm dom 𝐹 ) ) ) → ℂ ∈ V ) |
| 27 | 5 | ad2antlr | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ ( 𝑘 ∈ ( ℂ ↑pm dom 𝐹 ) ∧ 𝑛 ∈ ( ℂ ↑pm dom 𝐹 ) ) ) → dom 𝐹 ∈ V ) |
| 28 | dvfg | ⊢ ( 𝑆 ∈ { ℝ , ℂ } → ( 𝑆 D 𝑘 ) : dom ( 𝑆 D 𝑘 ) ⟶ ℂ ) | |
| 29 | 28 | ad2antrr | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ ( 𝑘 ∈ ( ℂ ↑pm dom 𝐹 ) ∧ 𝑛 ∈ ( ℂ ↑pm dom 𝐹 ) ) ) → ( 𝑆 D 𝑘 ) : dom ( 𝑆 D 𝑘 ) ⟶ ℂ ) |
| 30 | recnprss | ⊢ ( 𝑆 ∈ { ℝ , ℂ } → 𝑆 ⊆ ℂ ) | |
| 31 | 30 | ad2antrr | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ ( 𝑘 ∈ ( ℂ ↑pm dom 𝐹 ) ∧ 𝑛 ∈ ( ℂ ↑pm dom 𝐹 ) ) ) → 𝑆 ⊆ ℂ ) |
| 32 | simprl | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ ( 𝑘 ∈ ( ℂ ↑pm dom 𝐹 ) ∧ 𝑛 ∈ ( ℂ ↑pm dom 𝐹 ) ) ) → 𝑘 ∈ ( ℂ ↑pm dom 𝐹 ) ) | |
| 33 | elpm2g | ⊢ ( ( ℂ ∈ V ∧ dom 𝐹 ∈ V ) → ( 𝑘 ∈ ( ℂ ↑pm dom 𝐹 ) ↔ ( 𝑘 : dom 𝑘 ⟶ ℂ ∧ dom 𝑘 ⊆ dom 𝐹 ) ) ) | |
| 34 | 7 27 33 | sylancr | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ ( 𝑘 ∈ ( ℂ ↑pm dom 𝐹 ) ∧ 𝑛 ∈ ( ℂ ↑pm dom 𝐹 ) ) ) → ( 𝑘 ∈ ( ℂ ↑pm dom 𝐹 ) ↔ ( 𝑘 : dom 𝑘 ⟶ ℂ ∧ dom 𝑘 ⊆ dom 𝐹 ) ) ) |
| 35 | 32 34 | mpbid | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ ( 𝑘 ∈ ( ℂ ↑pm dom 𝐹 ) ∧ 𝑛 ∈ ( ℂ ↑pm dom 𝐹 ) ) ) → ( 𝑘 : dom 𝑘 ⟶ ℂ ∧ dom 𝑘 ⊆ dom 𝐹 ) ) |
| 36 | 35 | simpld | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ ( 𝑘 ∈ ( ℂ ↑pm dom 𝐹 ) ∧ 𝑛 ∈ ( ℂ ↑pm dom 𝐹 ) ) ) → 𝑘 : dom 𝑘 ⟶ ℂ ) |
| 37 | 35 | simprd | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ ( 𝑘 ∈ ( ℂ ↑pm dom 𝐹 ) ∧ 𝑛 ∈ ( ℂ ↑pm dom 𝐹 ) ) ) → dom 𝑘 ⊆ dom 𝐹 ) |
| 38 | 11 | simprd | ⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) → dom 𝐹 ⊆ 𝑆 ) |
| 39 | 38 | adantr | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ ( 𝑘 ∈ ( ℂ ↑pm dom 𝐹 ) ∧ 𝑛 ∈ ( ℂ ↑pm dom 𝐹 ) ) ) → dom 𝐹 ⊆ 𝑆 ) |
| 40 | 37 39 | sstrd | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ ( 𝑘 ∈ ( ℂ ↑pm dom 𝐹 ) ∧ 𝑛 ∈ ( ℂ ↑pm dom 𝐹 ) ) ) → dom 𝑘 ⊆ 𝑆 ) |
| 41 | 31 36 40 | dvbss | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ ( 𝑘 ∈ ( ℂ ↑pm dom 𝐹 ) ∧ 𝑛 ∈ ( ℂ ↑pm dom 𝐹 ) ) ) → dom ( 𝑆 D 𝑘 ) ⊆ dom 𝑘 ) |
| 42 | 41 37 | sstrd | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ ( 𝑘 ∈ ( ℂ ↑pm dom 𝐹 ) ∧ 𝑛 ∈ ( ℂ ↑pm dom 𝐹 ) ) ) → dom ( 𝑆 D 𝑘 ) ⊆ dom 𝐹 ) |
| 43 | elpm2r | ⊢ ( ( ( ℂ ∈ V ∧ dom 𝐹 ∈ V ) ∧ ( ( 𝑆 D 𝑘 ) : dom ( 𝑆 D 𝑘 ) ⟶ ℂ ∧ dom ( 𝑆 D 𝑘 ) ⊆ dom 𝐹 ) ) → ( 𝑆 D 𝑘 ) ∈ ( ℂ ↑pm dom 𝐹 ) ) | |
| 44 | 26 27 29 42 43 | syl22anc | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ ( 𝑘 ∈ ( ℂ ↑pm dom 𝐹 ) ∧ 𝑛 ∈ ( ℂ ↑pm dom 𝐹 ) ) ) → ( 𝑆 D 𝑘 ) ∈ ( ℂ ↑pm dom 𝐹 ) ) |
| 45 | 25 44 | eqeltrid | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ ( 𝑘 ∈ ( ℂ ↑pm dom 𝐹 ) ∧ 𝑛 ∈ ( ℂ ↑pm dom 𝐹 ) ) ) → ( 𝑘 ( ( 𝑥 ∈ V ↦ ( 𝑆 D 𝑥 ) ) ∘ 1st ) 𝑛 ) ∈ ( ℂ ↑pm dom 𝐹 ) ) |
| 46 | 1 2 16 45 | seqf | ⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) → seq 0 ( ( ( 𝑥 ∈ V ↦ ( 𝑆 D 𝑥 ) ) ∘ 1st ) , ( ℕ0 × { 𝐹 } ) ) : ℕ0 ⟶ ( ℂ ↑pm dom 𝐹 ) ) |
| 47 | 21 | dvnfval | ⊢ ( ( 𝑆 ⊆ ℂ ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) → ( 𝑆 D𝑛 𝐹 ) = seq 0 ( ( ( 𝑥 ∈ V ↦ ( 𝑆 D 𝑥 ) ) ∘ 1st ) , ( ℕ0 × { 𝐹 } ) ) ) |
| 48 | 30 47 | sylan | ⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) → ( 𝑆 D𝑛 𝐹 ) = seq 0 ( ( ( 𝑥 ∈ V ↦ ( 𝑆 D 𝑥 ) ) ∘ 1st ) , ( ℕ0 × { 𝐹 } ) ) ) |
| 49 | 48 | feq1d | ⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) → ( ( 𝑆 D𝑛 𝐹 ) : ℕ0 ⟶ ( ℂ ↑pm dom 𝐹 ) ↔ seq 0 ( ( ( 𝑥 ∈ V ↦ ( 𝑆 D 𝑥 ) ) ∘ 1st ) , ( ℕ0 × { 𝐹 } ) ) : ℕ0 ⟶ ( ℂ ↑pm dom 𝐹 ) ) ) |
| 50 | 46 49 | mpbird | ⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) → ( 𝑆 D𝑛 𝐹 ) : ℕ0 ⟶ ( ℂ ↑pm dom 𝐹 ) ) |