This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sum of two continuous complex functions is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | addcncff.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 –cn→ ℂ ) ) | |
| addcncff.g | ⊢ ( 𝜑 → 𝐺 ∈ ( 𝑋 –cn→ ℂ ) ) | ||
| Assertion | addcncff | ⊢ ( 𝜑 → ( 𝐹 ∘f + 𝐺 ) ∈ ( 𝑋 –cn→ ℂ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addcncff.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 –cn→ ℂ ) ) | |
| 2 | addcncff.g | ⊢ ( 𝜑 → 𝐺 ∈ ( 𝑋 –cn→ ℂ ) ) | |
| 3 | cncfrss | ⊢ ( 𝐹 ∈ ( 𝑋 –cn→ ℂ ) → 𝑋 ⊆ ℂ ) | |
| 4 | cnex | ⊢ ℂ ∈ V | |
| 5 | 4 | ssex | ⊢ ( 𝑋 ⊆ ℂ → 𝑋 ∈ V ) |
| 6 | 1 3 5 | 3syl | ⊢ ( 𝜑 → 𝑋 ∈ V ) |
| 7 | cncff | ⊢ ( 𝐹 ∈ ( 𝑋 –cn→ ℂ ) → 𝐹 : 𝑋 ⟶ ℂ ) | |
| 8 | 1 7 | syl | ⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ℂ ) |
| 9 | 8 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
| 10 | cncff | ⊢ ( 𝐺 ∈ ( 𝑋 –cn→ ℂ ) → 𝐺 : 𝑋 ⟶ ℂ ) | |
| 11 | 2 10 | syl | ⊢ ( 𝜑 → 𝐺 : 𝑋 ⟶ ℂ ) |
| 12 | 11 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐺 ‘ 𝑥 ) ∈ ℂ ) |
| 13 | 8 | feqmptd | ⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝑋 ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| 14 | 11 | feqmptd | ⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ 𝑋 ↦ ( 𝐺 ‘ 𝑥 ) ) ) |
| 15 | 6 9 12 13 14 | offval2 | ⊢ ( 𝜑 → ( 𝐹 ∘f + 𝐺 ) = ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐺 ‘ 𝑥 ) ) ) ) |
| 16 | 13 1 | eqeltrrd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( 𝐹 ‘ 𝑥 ) ) ∈ ( 𝑋 –cn→ ℂ ) ) |
| 17 | 14 2 | eqeltrrd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( 𝐺 ‘ 𝑥 ) ) ∈ ( 𝑋 –cn→ ℂ ) ) |
| 18 | 16 17 | addcncf | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐺 ‘ 𝑥 ) ) ) ∈ ( 𝑋 –cn→ ℂ ) ) |
| 19 | 15 18 | eqeltrd | ⊢ ( 𝜑 → ( 𝐹 ∘f + 𝐺 ) ∈ ( 𝑋 –cn→ ℂ ) ) |