This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Function-builder for derivative: derivative of a constant. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvmptconst.s | ⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) | |
| dvmptconst.a | ⊢ ( 𝜑 → 𝐴 ∈ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) | ||
| dvmptconst.b | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | ||
| Assertion | dvmptconst | ⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) = ( 𝑥 ∈ 𝐴 ↦ 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvmptconst.s | ⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) | |
| 2 | dvmptconst.a | ⊢ ( 𝜑 → 𝐴 ∈ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) | |
| 3 | dvmptconst.b | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | |
| 4 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝐵 ∈ ℂ ) |
| 5 | 0red | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 0 ∈ ℝ ) | |
| 6 | 1 3 | dvmptc | ⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑆 ↦ 𝐵 ) ) = ( 𝑥 ∈ 𝑆 ↦ 0 ) ) |
| 7 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
| 8 | 7 | cnfldtopon | ⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
| 9 | 8 | a1i | ⊢ ( 𝜑 → ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ) |
| 10 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 11 | sseq1 | ⊢ ( 𝑆 = ℝ → ( 𝑆 ⊆ ℂ ↔ ℝ ⊆ ℂ ) ) | |
| 12 | 10 11 | mpbiri | ⊢ ( 𝑆 = ℝ → 𝑆 ⊆ ℂ ) |
| 13 | eqimss | ⊢ ( 𝑆 = ℂ → 𝑆 ⊆ ℂ ) | |
| 14 | 12 13 | pm3.2i | ⊢ ( ( 𝑆 = ℝ → 𝑆 ⊆ ℂ ) ∧ ( 𝑆 = ℂ → 𝑆 ⊆ ℂ ) ) |
| 15 | elpri | ⊢ ( 𝑆 ∈ { ℝ , ℂ } → ( 𝑆 = ℝ ∨ 𝑆 = ℂ ) ) | |
| 16 | 1 15 | syl | ⊢ ( 𝜑 → ( 𝑆 = ℝ ∨ 𝑆 = ℂ ) ) |
| 17 | pm3.44 | ⊢ ( ( ( 𝑆 = ℝ → 𝑆 ⊆ ℂ ) ∧ ( 𝑆 = ℂ → 𝑆 ⊆ ℂ ) ) → ( ( 𝑆 = ℝ ∨ 𝑆 = ℂ ) → 𝑆 ⊆ ℂ ) ) | |
| 18 | 14 16 17 | mpsyl | ⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) |
| 19 | resttopon | ⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ∧ 𝑆 ⊆ ℂ ) → ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) ) | |
| 20 | 9 18 19 | syl2anc | ⊢ ( 𝜑 → ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) ) |
| 21 | toponss | ⊢ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) ∧ 𝐴 ∈ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) → 𝐴 ⊆ 𝑆 ) | |
| 22 | 20 2 21 | syl2anc | ⊢ ( 𝜑 → 𝐴 ⊆ 𝑆 ) |
| 23 | eqid | ⊢ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) = ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) | |
| 24 | 1 4 5 6 22 23 7 2 | dvmptres | ⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) = ( 𝑥 ∈ 𝐴 ↦ 0 ) ) |