This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Function-builder for derivative: derivative of a constant. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvmptconst.s | |- ( ph -> S e. { RR , CC } ) |
|
| dvmptconst.a | |- ( ph -> A e. ( ( TopOpen ` CCfld ) |`t S ) ) |
||
| dvmptconst.b | |- ( ph -> B e. CC ) |
||
| Assertion | dvmptconst | |- ( ph -> ( S _D ( x e. A |-> B ) ) = ( x e. A |-> 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvmptconst.s | |- ( ph -> S e. { RR , CC } ) |
|
| 2 | dvmptconst.a | |- ( ph -> A e. ( ( TopOpen ` CCfld ) |`t S ) ) |
|
| 3 | dvmptconst.b | |- ( ph -> B e. CC ) |
|
| 4 | 3 | adantr | |- ( ( ph /\ x e. S ) -> B e. CC ) |
| 5 | 0red | |- ( ( ph /\ x e. S ) -> 0 e. RR ) |
|
| 6 | 1 3 | dvmptc | |- ( ph -> ( S _D ( x e. S |-> B ) ) = ( x e. S |-> 0 ) ) |
| 7 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
| 8 | 7 | cnfldtopon | |- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
| 9 | 8 | a1i | |- ( ph -> ( TopOpen ` CCfld ) e. ( TopOn ` CC ) ) |
| 10 | ax-resscn | |- RR C_ CC |
|
| 11 | sseq1 | |- ( S = RR -> ( S C_ CC <-> RR C_ CC ) ) |
|
| 12 | 10 11 | mpbiri | |- ( S = RR -> S C_ CC ) |
| 13 | eqimss | |- ( S = CC -> S C_ CC ) |
|
| 14 | 12 13 | pm3.2i | |- ( ( S = RR -> S C_ CC ) /\ ( S = CC -> S C_ CC ) ) |
| 15 | elpri | |- ( S e. { RR , CC } -> ( S = RR \/ S = CC ) ) |
|
| 16 | 1 15 | syl | |- ( ph -> ( S = RR \/ S = CC ) ) |
| 17 | pm3.44 | |- ( ( ( S = RR -> S C_ CC ) /\ ( S = CC -> S C_ CC ) ) -> ( ( S = RR \/ S = CC ) -> S C_ CC ) ) |
|
| 18 | 14 16 17 | mpsyl | |- ( ph -> S C_ CC ) |
| 19 | resttopon | |- ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ S C_ CC ) -> ( ( TopOpen ` CCfld ) |`t S ) e. ( TopOn ` S ) ) |
|
| 20 | 9 18 19 | syl2anc | |- ( ph -> ( ( TopOpen ` CCfld ) |`t S ) e. ( TopOn ` S ) ) |
| 21 | toponss | |- ( ( ( ( TopOpen ` CCfld ) |`t S ) e. ( TopOn ` S ) /\ A e. ( ( TopOpen ` CCfld ) |`t S ) ) -> A C_ S ) |
|
| 22 | 20 2 21 | syl2anc | |- ( ph -> A C_ S ) |
| 23 | eqid | |- ( ( TopOpen ` CCfld ) |`t S ) = ( ( TopOpen ` CCfld ) |`t S ) |
|
| 24 | 1 4 5 6 22 23 7 2 | dvmptres | |- ( ph -> ( S _D ( x e. A |-> B ) ) = ( x e. A |-> 0 ) ) |