This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: From complex differentiation to real differentiation. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvcnre | ⊢ ( ( 𝐹 : ℂ ⟶ ℂ ∧ ℝ ⊆ dom ( ℂ D 𝐹 ) ) → ( ℝ D ( 𝐹 ↾ ℝ ) ) = ( ( ℂ D 𝐹 ) ↾ ℝ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reelprrecn | ⊢ ℝ ∈ { ℝ , ℂ } | |
| 2 | 1 | a1i | ⊢ ( ( 𝐹 : ℂ ⟶ ℂ ∧ ℝ ⊆ dom ( ℂ D 𝐹 ) ) → ℝ ∈ { ℝ , ℂ } ) |
| 3 | simpl | ⊢ ( ( 𝐹 : ℂ ⟶ ℂ ∧ ℝ ⊆ dom ( ℂ D 𝐹 ) ) → 𝐹 : ℂ ⟶ ℂ ) | |
| 4 | ssidd | ⊢ ( ( 𝐹 : ℂ ⟶ ℂ ∧ ℝ ⊆ dom ( ℂ D 𝐹 ) ) → ℂ ⊆ ℂ ) | |
| 5 | simpr | ⊢ ( ( 𝐹 : ℂ ⟶ ℂ ∧ ℝ ⊆ dom ( ℂ D 𝐹 ) ) → ℝ ⊆ dom ( ℂ D 𝐹 ) ) | |
| 6 | dvres3 | ⊢ ( ( ( ℝ ∈ { ℝ , ℂ } ∧ 𝐹 : ℂ ⟶ ℂ ) ∧ ( ℂ ⊆ ℂ ∧ ℝ ⊆ dom ( ℂ D 𝐹 ) ) ) → ( ℝ D ( 𝐹 ↾ ℝ ) ) = ( ( ℂ D 𝐹 ) ↾ ℝ ) ) | |
| 7 | 2 3 4 5 6 | syl22anc | ⊢ ( ( 𝐹 : ℂ ⟶ ℂ ∧ ℝ ⊆ dom ( ℂ D 𝐹 ) ) → ( ℝ D ( 𝐹 ↾ ℝ ) ) = ( ( ℂ D 𝐹 ) ↾ ℝ ) ) |