This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An integer divides another iff it divides their difference. (Contributed by Paul Chapman, 31-Mar-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvdssub | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∥ 𝑁 ↔ 𝑀 ∥ ( 𝑀 − 𝑁 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdsnegb | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∥ 𝑁 ↔ 𝑀 ∥ - 𝑁 ) ) | |
| 2 | znegcl | ⊢ ( 𝑁 ∈ ℤ → - 𝑁 ∈ ℤ ) | |
| 3 | dvdsadd | ⊢ ( ( 𝑀 ∈ ℤ ∧ - 𝑁 ∈ ℤ ) → ( 𝑀 ∥ - 𝑁 ↔ 𝑀 ∥ ( 𝑀 + - 𝑁 ) ) ) | |
| 4 | 2 3 | sylan2 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∥ - 𝑁 ↔ 𝑀 ∥ ( 𝑀 + - 𝑁 ) ) ) |
| 5 | zcn | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℂ ) | |
| 6 | zcn | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℂ ) | |
| 7 | negsub | ⊢ ( ( 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ) → ( 𝑀 + - 𝑁 ) = ( 𝑀 − 𝑁 ) ) | |
| 8 | 5 6 7 | syl2an | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 + - 𝑁 ) = ( 𝑀 − 𝑁 ) ) |
| 9 | 8 | breq2d | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∥ ( 𝑀 + - 𝑁 ) ↔ 𝑀 ∥ ( 𝑀 − 𝑁 ) ) ) |
| 10 | 1 4 9 | 3bitrd | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∥ 𝑁 ↔ 𝑀 ∥ ( 𝑀 − 𝑁 ) ) ) |