This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An integer divides another iff it divides their sum. (Contributed by Paul Chapman, 31-Mar-2011) (Revised by Mario Carneiro, 13-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvdsadd | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∥ 𝑁 ↔ 𝑀 ∥ ( 𝑀 + 𝑁 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → 𝑀 ∈ ℤ ) | |
| 2 | zaddcl | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 + 𝑁 ) ∈ ℤ ) | |
| 3 | simpr | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → 𝑁 ∈ ℤ ) | |
| 4 | iddvds | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∥ 𝑀 ) | |
| 5 | 4 | adantr | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → 𝑀 ∥ 𝑀 ) |
| 6 | zcn | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℂ ) | |
| 7 | zcn | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℂ ) | |
| 8 | pncan | ⊢ ( ( 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ) → ( ( 𝑀 + 𝑁 ) − 𝑁 ) = 𝑀 ) | |
| 9 | 6 7 8 | syl2an | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀 + 𝑁 ) − 𝑁 ) = 𝑀 ) |
| 10 | 5 9 | breqtrrd | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → 𝑀 ∥ ( ( 𝑀 + 𝑁 ) − 𝑁 ) ) |
| 11 | dvdssub2 | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ ( 𝑀 + 𝑁 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑀 ∥ ( ( 𝑀 + 𝑁 ) − 𝑁 ) ) → ( 𝑀 ∥ ( 𝑀 + 𝑁 ) ↔ 𝑀 ∥ 𝑁 ) ) | |
| 12 | 1 2 3 10 11 | syl31anc | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∥ ( 𝑀 + 𝑁 ) ↔ 𝑀 ∥ 𝑁 ) ) |
| 13 | 12 | bicomd | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∥ 𝑁 ↔ 𝑀 ∥ ( 𝑀 + 𝑁 ) ) ) |