This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An integer divides another iff it divides their difference. (Contributed by Paul Chapman, 31-Mar-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvdssub | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M || N <-> M || ( M - N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdsnegb | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M || N <-> M || -u N ) ) |
|
| 2 | znegcl | |- ( N e. ZZ -> -u N e. ZZ ) |
|
| 3 | dvdsadd | |- ( ( M e. ZZ /\ -u N e. ZZ ) -> ( M || -u N <-> M || ( M + -u N ) ) ) |
|
| 4 | 2 3 | sylan2 | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M || -u N <-> M || ( M + -u N ) ) ) |
| 5 | zcn | |- ( M e. ZZ -> M e. CC ) |
|
| 6 | zcn | |- ( N e. ZZ -> N e. CC ) |
|
| 7 | negsub | |- ( ( M e. CC /\ N e. CC ) -> ( M + -u N ) = ( M - N ) ) |
|
| 8 | 5 6 7 | syl2an | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M + -u N ) = ( M - N ) ) |
| 9 | 8 | breq2d | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M || ( M + -u N ) <-> M || ( M - N ) ) ) |
| 10 | 1 4 9 | 3bitrd | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M || N <-> M || ( M - N ) ) ) |