This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a ring, zero is divisible by all elements. ("Zero divisor" as a term has a somewhat different meaning, see df-rlreg .) (Contributed by Stefan O'Rear, 29-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvdsr0.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| dvdsr0.d | ⊢ ∥ = ( ∥r ‘ 𝑅 ) | ||
| dvdsr0.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| Assertion | dvdsr01 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∥ 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdsr0.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | dvdsr0.d | ⊢ ∥ = ( ∥r ‘ 𝑅 ) | |
| 3 | dvdsr0.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 4 | 1 3 | ring0cl | ⊢ ( 𝑅 ∈ Ring → 0 ∈ 𝐵 ) |
| 5 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 6 | 1 5 3 | ringlz | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( 0 ( .r ‘ 𝑅 ) 𝑋 ) = 0 ) |
| 7 | oveq1 | ⊢ ( 𝑥 = 0 → ( 𝑥 ( .r ‘ 𝑅 ) 𝑋 ) = ( 0 ( .r ‘ 𝑅 ) 𝑋 ) ) | |
| 8 | 7 | eqeq1d | ⊢ ( 𝑥 = 0 → ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑋 ) = 0 ↔ ( 0 ( .r ‘ 𝑅 ) 𝑋 ) = 0 ) ) |
| 9 | 8 | rspcev | ⊢ ( ( 0 ∈ 𝐵 ∧ ( 0 ( .r ‘ 𝑅 ) 𝑋 ) = 0 ) → ∃ 𝑥 ∈ 𝐵 ( 𝑥 ( .r ‘ 𝑅 ) 𝑋 ) = 0 ) |
| 10 | 4 6 9 | syl2an2r | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ∃ 𝑥 ∈ 𝐵 ( 𝑥 ( .r ‘ 𝑅 ) 𝑋 ) = 0 ) |
| 11 | 1 2 5 | dvdsr2 | ⊢ ( 𝑋 ∈ 𝐵 → ( 𝑋 ∥ 0 ↔ ∃ 𝑥 ∈ 𝐵 ( 𝑥 ( .r ‘ 𝑅 ) 𝑋 ) = 0 ) ) |
| 12 | 11 | adantl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 ∥ 0 ↔ ∃ 𝑥 ∈ 𝐵 ( 𝑥 ( .r ‘ 𝑅 ) 𝑋 ) = 0 ) ) |
| 13 | 10 12 | mpbird | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∥ 0 ) |