This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a ring, zero is divisible by all elements. ("Zero divisor" as a term has a somewhat different meaning, see df-rlreg .) (Contributed by Stefan O'Rear, 29-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvdsr0.b | |- B = ( Base ` R ) |
|
| dvdsr0.d | |- .|| = ( ||r ` R ) |
||
| dvdsr0.z | |- .0. = ( 0g ` R ) |
||
| Assertion | dvdsr01 | |- ( ( R e. Ring /\ X e. B ) -> X .|| .0. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdsr0.b | |- B = ( Base ` R ) |
|
| 2 | dvdsr0.d | |- .|| = ( ||r ` R ) |
|
| 3 | dvdsr0.z | |- .0. = ( 0g ` R ) |
|
| 4 | 1 3 | ring0cl | |- ( R e. Ring -> .0. e. B ) |
| 5 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 6 | 1 5 3 | ringlz | |- ( ( R e. Ring /\ X e. B ) -> ( .0. ( .r ` R ) X ) = .0. ) |
| 7 | oveq1 | |- ( x = .0. -> ( x ( .r ` R ) X ) = ( .0. ( .r ` R ) X ) ) |
|
| 8 | 7 | eqeq1d | |- ( x = .0. -> ( ( x ( .r ` R ) X ) = .0. <-> ( .0. ( .r ` R ) X ) = .0. ) ) |
| 9 | 8 | rspcev | |- ( ( .0. e. B /\ ( .0. ( .r ` R ) X ) = .0. ) -> E. x e. B ( x ( .r ` R ) X ) = .0. ) |
| 10 | 4 6 9 | syl2an2r | |- ( ( R e. Ring /\ X e. B ) -> E. x e. B ( x ( .r ` R ) X ) = .0. ) |
| 11 | 1 2 5 | dvdsr2 | |- ( X e. B -> ( X .|| .0. <-> E. x e. B ( x ( .r ` R ) X ) = .0. ) ) |
| 12 | 11 | adantl | |- ( ( R e. Ring /\ X e. B ) -> ( X .|| .0. <-> E. x e. B ( x ( .r ` R ) X ) = .0. ) ) |
| 13 | 10 12 | mpbird | |- ( ( R e. Ring /\ X e. B ) -> X .|| .0. ) |