This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If an integer divides another integer, then it also divides any of its powers. (Contributed by Scott Fenton, 7-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvdsexp2im | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝐾 ∥ 𝑀 → 𝐾 ∥ ( 𝑀 ↑ 𝑁 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divides | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝐾 ∥ 𝑀 ↔ ∃ 𝑚 ∈ ℤ ( 𝑚 · 𝐾 ) = 𝑀 ) ) | |
| 2 | 1 | 3adant3 | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝐾 ∥ 𝑀 ↔ ∃ 𝑚 ∈ ℤ ( 𝑚 · 𝐾 ) = 𝑀 ) ) |
| 3 | simpl1 | ⊢ ( ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ 𝑚 ∈ ℤ ) → 𝐾 ∈ ℤ ) | |
| 4 | nnnn0 | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ0 ) | |
| 5 | 4 | 3ad2ant3 | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → 𝑁 ∈ ℕ0 ) |
| 6 | 5 | adantr | ⊢ ( ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ 𝑚 ∈ ℤ ) → 𝑁 ∈ ℕ0 ) |
| 7 | zexpcl | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐾 ↑ 𝑁 ) ∈ ℤ ) | |
| 8 | 3 6 7 | syl2anc | ⊢ ( ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ 𝑚 ∈ ℤ ) → ( 𝐾 ↑ 𝑁 ) ∈ ℤ ) |
| 9 | simpr | ⊢ ( ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ 𝑚 ∈ ℤ ) → 𝑚 ∈ ℤ ) | |
| 10 | zexpcl | ⊢ ( ( 𝑚 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → ( 𝑚 ↑ 𝑁 ) ∈ ℤ ) | |
| 11 | 9 6 10 | syl2anc | ⊢ ( ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ 𝑚 ∈ ℤ ) → ( 𝑚 ↑ 𝑁 ) ∈ ℤ ) |
| 12 | 11 8 | zmulcld | ⊢ ( ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ 𝑚 ∈ ℤ ) → ( ( 𝑚 ↑ 𝑁 ) · ( 𝐾 ↑ 𝑁 ) ) ∈ ℤ ) |
| 13 | simpl3 | ⊢ ( ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ 𝑚 ∈ ℤ ) → 𝑁 ∈ ℕ ) | |
| 14 | iddvdsexp | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → 𝐾 ∥ ( 𝐾 ↑ 𝑁 ) ) | |
| 15 | 3 13 14 | syl2anc | ⊢ ( ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ 𝑚 ∈ ℤ ) → 𝐾 ∥ ( 𝐾 ↑ 𝑁 ) ) |
| 16 | dvdsmul2 | ⊢ ( ( ( 𝑚 ↑ 𝑁 ) ∈ ℤ ∧ ( 𝐾 ↑ 𝑁 ) ∈ ℤ ) → ( 𝐾 ↑ 𝑁 ) ∥ ( ( 𝑚 ↑ 𝑁 ) · ( 𝐾 ↑ 𝑁 ) ) ) | |
| 17 | 11 8 16 | syl2anc | ⊢ ( ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ 𝑚 ∈ ℤ ) → ( 𝐾 ↑ 𝑁 ) ∥ ( ( 𝑚 ↑ 𝑁 ) · ( 𝐾 ↑ 𝑁 ) ) ) |
| 18 | 3 8 12 15 17 | dvdstrd | ⊢ ( ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ 𝑚 ∈ ℤ ) → 𝐾 ∥ ( ( 𝑚 ↑ 𝑁 ) · ( 𝐾 ↑ 𝑁 ) ) ) |
| 19 | zcn | ⊢ ( 𝑚 ∈ ℤ → 𝑚 ∈ ℂ ) | |
| 20 | 19 | adantl | ⊢ ( ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ 𝑚 ∈ ℤ ) → 𝑚 ∈ ℂ ) |
| 21 | zcn | ⊢ ( 𝐾 ∈ ℤ → 𝐾 ∈ ℂ ) | |
| 22 | 21 | 3ad2ant1 | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → 𝐾 ∈ ℂ ) |
| 23 | 22 | adantr | ⊢ ( ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ 𝑚 ∈ ℤ ) → 𝐾 ∈ ℂ ) |
| 24 | 20 23 6 | mulexpd | ⊢ ( ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ 𝑚 ∈ ℤ ) → ( ( 𝑚 · 𝐾 ) ↑ 𝑁 ) = ( ( 𝑚 ↑ 𝑁 ) · ( 𝐾 ↑ 𝑁 ) ) ) |
| 25 | 18 24 | breqtrrd | ⊢ ( ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ 𝑚 ∈ ℤ ) → 𝐾 ∥ ( ( 𝑚 · 𝐾 ) ↑ 𝑁 ) ) |
| 26 | oveq1 | ⊢ ( ( 𝑚 · 𝐾 ) = 𝑀 → ( ( 𝑚 · 𝐾 ) ↑ 𝑁 ) = ( 𝑀 ↑ 𝑁 ) ) | |
| 27 | 26 | breq2d | ⊢ ( ( 𝑚 · 𝐾 ) = 𝑀 → ( 𝐾 ∥ ( ( 𝑚 · 𝐾 ) ↑ 𝑁 ) ↔ 𝐾 ∥ ( 𝑀 ↑ 𝑁 ) ) ) |
| 28 | 25 27 | syl5ibcom | ⊢ ( ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ 𝑚 ∈ ℤ ) → ( ( 𝑚 · 𝐾 ) = 𝑀 → 𝐾 ∥ ( 𝑀 ↑ 𝑁 ) ) ) |
| 29 | 28 | rexlimdva | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( ∃ 𝑚 ∈ ℤ ( 𝑚 · 𝐾 ) = 𝑀 → 𝐾 ∥ ( 𝑀 ↑ 𝑁 ) ) ) |
| 30 | 2 29 | sylbid | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝐾 ∥ 𝑀 → 𝐾 ∥ ( 𝑀 ↑ 𝑁 ) ) ) |