This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The difference quotient is continuous at B when the original function is differentiable at B . (Contributed by Mario Carneiro, 8-Aug-2014) (Revised by Mario Carneiro, 28-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvcnp.j | ⊢ 𝐽 = ( 𝐾 ↾t 𝐴 ) | |
| dvcnp.k | ⊢ 𝐾 = ( TopOpen ‘ ℂfld ) | ||
| dvcnp.g | ⊢ 𝐺 = ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 = 𝐵 , ( ( 𝑆 D 𝐹 ) ‘ 𝐵 ) , ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑧 − 𝐵 ) ) ) ) | ||
| Assertion | dvcnp | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ∈ dom ( 𝑆 D 𝐹 ) ) → 𝐺 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvcnp.j | ⊢ 𝐽 = ( 𝐾 ↾t 𝐴 ) | |
| 2 | dvcnp.k | ⊢ 𝐾 = ( TopOpen ‘ ℂfld ) | |
| 3 | dvcnp.g | ⊢ 𝐺 = ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 = 𝐵 , ( ( 𝑆 D 𝐹 ) ‘ 𝐵 ) , ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑧 − 𝐵 ) ) ) ) | |
| 4 | dvfg | ⊢ ( 𝑆 ∈ { ℝ , ℂ } → ( 𝑆 D 𝐹 ) : dom ( 𝑆 D 𝐹 ) ⟶ ℂ ) | |
| 5 | 4 | 3ad2ant1 | ⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) → ( 𝑆 D 𝐹 ) : dom ( 𝑆 D 𝐹 ) ⟶ ℂ ) |
| 6 | ffun | ⊢ ( ( 𝑆 D 𝐹 ) : dom ( 𝑆 D 𝐹 ) ⟶ ℂ → Fun ( 𝑆 D 𝐹 ) ) | |
| 7 | funfvbrb | ⊢ ( Fun ( 𝑆 D 𝐹 ) → ( 𝐵 ∈ dom ( 𝑆 D 𝐹 ) ↔ 𝐵 ( 𝑆 D 𝐹 ) ( ( 𝑆 D 𝐹 ) ‘ 𝐵 ) ) ) | |
| 8 | 5 6 7 | 3syl | ⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) → ( 𝐵 ∈ dom ( 𝑆 D 𝐹 ) ↔ 𝐵 ( 𝑆 D 𝐹 ) ( ( 𝑆 D 𝐹 ) ‘ 𝐵 ) ) ) |
| 9 | eqid | ⊢ ( 𝐾 ↾t 𝑆 ) = ( 𝐾 ↾t 𝑆 ) | |
| 10 | eqid | ⊢ ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑧 − 𝐵 ) ) ) = ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑧 − 𝐵 ) ) ) | |
| 11 | recnprss | ⊢ ( 𝑆 ∈ { ℝ , ℂ } → 𝑆 ⊆ ℂ ) | |
| 12 | 11 | 3ad2ant1 | ⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) → 𝑆 ⊆ ℂ ) |
| 13 | simp2 | ⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) → 𝐹 : 𝐴 ⟶ ℂ ) | |
| 14 | simp3 | ⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) → 𝐴 ⊆ 𝑆 ) | |
| 15 | 9 2 10 12 13 14 | eldv | ⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) → ( 𝐵 ( 𝑆 D 𝐹 ) ( ( 𝑆 D 𝐹 ) ‘ 𝐵 ) ↔ ( 𝐵 ∈ ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ 𝐴 ) ∧ ( ( 𝑆 D 𝐹 ) ‘ 𝐵 ) ∈ ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑧 − 𝐵 ) ) ) limℂ 𝐵 ) ) ) ) |
| 16 | 8 15 | bitrd | ⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) → ( 𝐵 ∈ dom ( 𝑆 D 𝐹 ) ↔ ( 𝐵 ∈ ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ 𝐴 ) ∧ ( ( 𝑆 D 𝐹 ) ‘ 𝐵 ) ∈ ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑧 − 𝐵 ) ) ) limℂ 𝐵 ) ) ) ) |
| 17 | 16 | simplbda | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ∈ dom ( 𝑆 D 𝐹 ) ) → ( ( 𝑆 D 𝐹 ) ‘ 𝐵 ) ∈ ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑧 − 𝐵 ) ) ) limℂ 𝐵 ) ) |
| 18 | 14 12 | sstrd | ⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) → 𝐴 ⊆ ℂ ) |
| 19 | 18 | adantr | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ∈ dom ( 𝑆 D 𝐹 ) ) → 𝐴 ⊆ ℂ ) |
| 20 | 12 13 14 | dvbss | ⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) → dom ( 𝑆 D 𝐹 ) ⊆ 𝐴 ) |
| 21 | 20 | sselda | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ∈ dom ( 𝑆 D 𝐹 ) ) → 𝐵 ∈ 𝐴 ) |
| 22 | eldifsn | ⊢ ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ↔ ( 𝑧 ∈ 𝐴 ∧ 𝑧 ≠ 𝐵 ) ) | |
| 23 | 13 | adantr | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ∈ dom ( 𝑆 D 𝐹 ) ) → 𝐹 : 𝐴 ⟶ ℂ ) |
| 24 | 23 19 21 | dvlem | ⊢ ( ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ∈ dom ( 𝑆 D 𝐹 ) ) ∧ 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ) → ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑧 − 𝐵 ) ) ∈ ℂ ) |
| 25 | 22 24 | sylan2br | ⊢ ( ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ∈ dom ( 𝑆 D 𝐹 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑧 ≠ 𝐵 ) ) → ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑧 − 𝐵 ) ) ∈ ℂ ) |
| 26 | 19 21 25 1 2 | limcmpt2 | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ∈ dom ( 𝑆 D 𝐹 ) ) → ( ( ( 𝑆 D 𝐹 ) ‘ 𝐵 ) ∈ ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑧 − 𝐵 ) ) ) limℂ 𝐵 ) ↔ ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 = 𝐵 , ( ( 𝑆 D 𝐹 ) ‘ 𝐵 ) , ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑧 − 𝐵 ) ) ) ) ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) ) ) |
| 27 | 17 26 | mpbid | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ∈ dom ( 𝑆 D 𝐹 ) ) → ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 = 𝐵 , ( ( 𝑆 D 𝐹 ) ‘ 𝐵 ) , ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑧 − 𝐵 ) ) ) ) ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) ) |
| 28 | 3 27 | eqeltrid | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ∈ dom ( 𝑆 D 𝐹 ) ) → 𝐺 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) ) |