This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The difference quotient is continuous at B when the original function is differentiable at B . (Contributed by Mario Carneiro, 8-Aug-2014) (Revised by Mario Carneiro, 28-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvcnp.j | |- J = ( K |`t A ) |
|
| dvcnp.k | |- K = ( TopOpen ` CCfld ) |
||
| dvcnp.g | |- G = ( z e. A |-> if ( z = B , ( ( S _D F ) ` B ) , ( ( ( F ` z ) - ( F ` B ) ) / ( z - B ) ) ) ) |
||
| Assertion | dvcnp | |- ( ( ( S e. { RR , CC } /\ F : A --> CC /\ A C_ S ) /\ B e. dom ( S _D F ) ) -> G e. ( ( J CnP K ) ` B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvcnp.j | |- J = ( K |`t A ) |
|
| 2 | dvcnp.k | |- K = ( TopOpen ` CCfld ) |
|
| 3 | dvcnp.g | |- G = ( z e. A |-> if ( z = B , ( ( S _D F ) ` B ) , ( ( ( F ` z ) - ( F ` B ) ) / ( z - B ) ) ) ) |
|
| 4 | dvfg | |- ( S e. { RR , CC } -> ( S _D F ) : dom ( S _D F ) --> CC ) |
|
| 5 | 4 | 3ad2ant1 | |- ( ( S e. { RR , CC } /\ F : A --> CC /\ A C_ S ) -> ( S _D F ) : dom ( S _D F ) --> CC ) |
| 6 | ffun | |- ( ( S _D F ) : dom ( S _D F ) --> CC -> Fun ( S _D F ) ) |
|
| 7 | funfvbrb | |- ( Fun ( S _D F ) -> ( B e. dom ( S _D F ) <-> B ( S _D F ) ( ( S _D F ) ` B ) ) ) |
|
| 8 | 5 6 7 | 3syl | |- ( ( S e. { RR , CC } /\ F : A --> CC /\ A C_ S ) -> ( B e. dom ( S _D F ) <-> B ( S _D F ) ( ( S _D F ) ` B ) ) ) |
| 9 | eqid | |- ( K |`t S ) = ( K |`t S ) |
|
| 10 | eqid | |- ( z e. ( A \ { B } ) |-> ( ( ( F ` z ) - ( F ` B ) ) / ( z - B ) ) ) = ( z e. ( A \ { B } ) |-> ( ( ( F ` z ) - ( F ` B ) ) / ( z - B ) ) ) |
|
| 11 | recnprss | |- ( S e. { RR , CC } -> S C_ CC ) |
|
| 12 | 11 | 3ad2ant1 | |- ( ( S e. { RR , CC } /\ F : A --> CC /\ A C_ S ) -> S C_ CC ) |
| 13 | simp2 | |- ( ( S e. { RR , CC } /\ F : A --> CC /\ A C_ S ) -> F : A --> CC ) |
|
| 14 | simp3 | |- ( ( S e. { RR , CC } /\ F : A --> CC /\ A C_ S ) -> A C_ S ) |
|
| 15 | 9 2 10 12 13 14 | eldv | |- ( ( S e. { RR , CC } /\ F : A --> CC /\ A C_ S ) -> ( B ( S _D F ) ( ( S _D F ) ` B ) <-> ( B e. ( ( int ` ( K |`t S ) ) ` A ) /\ ( ( S _D F ) ` B ) e. ( ( z e. ( A \ { B } ) |-> ( ( ( F ` z ) - ( F ` B ) ) / ( z - B ) ) ) limCC B ) ) ) ) |
| 16 | 8 15 | bitrd | |- ( ( S e. { RR , CC } /\ F : A --> CC /\ A C_ S ) -> ( B e. dom ( S _D F ) <-> ( B e. ( ( int ` ( K |`t S ) ) ` A ) /\ ( ( S _D F ) ` B ) e. ( ( z e. ( A \ { B } ) |-> ( ( ( F ` z ) - ( F ` B ) ) / ( z - B ) ) ) limCC B ) ) ) ) |
| 17 | 16 | simplbda | |- ( ( ( S e. { RR , CC } /\ F : A --> CC /\ A C_ S ) /\ B e. dom ( S _D F ) ) -> ( ( S _D F ) ` B ) e. ( ( z e. ( A \ { B } ) |-> ( ( ( F ` z ) - ( F ` B ) ) / ( z - B ) ) ) limCC B ) ) |
| 18 | 14 12 | sstrd | |- ( ( S e. { RR , CC } /\ F : A --> CC /\ A C_ S ) -> A C_ CC ) |
| 19 | 18 | adantr | |- ( ( ( S e. { RR , CC } /\ F : A --> CC /\ A C_ S ) /\ B e. dom ( S _D F ) ) -> A C_ CC ) |
| 20 | 12 13 14 | dvbss | |- ( ( S e. { RR , CC } /\ F : A --> CC /\ A C_ S ) -> dom ( S _D F ) C_ A ) |
| 21 | 20 | sselda | |- ( ( ( S e. { RR , CC } /\ F : A --> CC /\ A C_ S ) /\ B e. dom ( S _D F ) ) -> B e. A ) |
| 22 | eldifsn | |- ( z e. ( A \ { B } ) <-> ( z e. A /\ z =/= B ) ) |
|
| 23 | 13 | adantr | |- ( ( ( S e. { RR , CC } /\ F : A --> CC /\ A C_ S ) /\ B e. dom ( S _D F ) ) -> F : A --> CC ) |
| 24 | 23 19 21 | dvlem | |- ( ( ( ( S e. { RR , CC } /\ F : A --> CC /\ A C_ S ) /\ B e. dom ( S _D F ) ) /\ z e. ( A \ { B } ) ) -> ( ( ( F ` z ) - ( F ` B ) ) / ( z - B ) ) e. CC ) |
| 25 | 22 24 | sylan2br | |- ( ( ( ( S e. { RR , CC } /\ F : A --> CC /\ A C_ S ) /\ B e. dom ( S _D F ) ) /\ ( z e. A /\ z =/= B ) ) -> ( ( ( F ` z ) - ( F ` B ) ) / ( z - B ) ) e. CC ) |
| 26 | 19 21 25 1 2 | limcmpt2 | |- ( ( ( S e. { RR , CC } /\ F : A --> CC /\ A C_ S ) /\ B e. dom ( S _D F ) ) -> ( ( ( S _D F ) ` B ) e. ( ( z e. ( A \ { B } ) |-> ( ( ( F ` z ) - ( F ` B ) ) / ( z - B ) ) ) limCC B ) <-> ( z e. A |-> if ( z = B , ( ( S _D F ) ` B ) , ( ( ( F ` z ) - ( F ` B ) ) / ( z - B ) ) ) ) e. ( ( J CnP K ) ` B ) ) ) |
| 27 | 17 26 | mpbid | |- ( ( ( S e. { RR , CC } /\ F : A --> CC /\ A C_ S ) /\ B e. dom ( S _D F ) ) -> ( z e. A |-> if ( z = B , ( ( S _D F ) ` B ) , ( ( ( F ` z ) - ( F ` B ) ) / ( z - B ) ) ) ) e. ( ( J CnP K ) ` B ) ) |
| 28 | 3 27 | eqeltrid | |- ( ( ( S e. { RR , CC } /\ F : A --> CC /\ A C_ S ) /\ B e. dom ( S _D F ) ) -> G e. ( ( J CnP K ) ` B ) ) |