This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Base set of the direct sum module using the fndmin abbreviation. (Contributed by Stefan O'Rear, 1-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dsmmbas2.p | |- P = ( S Xs_ R ) |
|
| dsmmbas2.b | |- B = { f e. ( Base ` P ) | dom ( f \ ( 0g o. R ) ) e. Fin } |
||
| Assertion | dsmmbas2 | |- ( ( R Fn I /\ I e. V ) -> B = ( Base ` ( S (+)m R ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dsmmbas2.p | |- P = ( S Xs_ R ) |
|
| 2 | dsmmbas2.b | |- B = { f e. ( Base ` P ) | dom ( f \ ( 0g o. R ) ) e. Fin } |
|
| 3 | 1 | fveq2i | |- ( Base ` P ) = ( Base ` ( S Xs_ R ) ) |
| 4 | 3 | rabeqi | |- { f e. ( Base ` P ) | dom ( f \ ( 0g o. R ) ) e. Fin } = { f e. ( Base ` ( S Xs_ R ) ) | dom ( f \ ( 0g o. R ) ) e. Fin } |
| 5 | simpll | |- ( ( ( R Fn I /\ I e. V ) /\ f e. ( Base ` ( S Xs_ R ) ) ) -> R Fn I ) |
|
| 6 | fvco2 | |- ( ( R Fn I /\ x e. I ) -> ( ( 0g o. R ) ` x ) = ( 0g ` ( R ` x ) ) ) |
|
| 7 | 5 6 | sylan | |- ( ( ( ( R Fn I /\ I e. V ) /\ f e. ( Base ` ( S Xs_ R ) ) ) /\ x e. I ) -> ( ( 0g o. R ) ` x ) = ( 0g ` ( R ` x ) ) ) |
| 8 | 7 | neeq2d | |- ( ( ( ( R Fn I /\ I e. V ) /\ f e. ( Base ` ( S Xs_ R ) ) ) /\ x e. I ) -> ( ( f ` x ) =/= ( ( 0g o. R ) ` x ) <-> ( f ` x ) =/= ( 0g ` ( R ` x ) ) ) ) |
| 9 | 8 | rabbidva | |- ( ( ( R Fn I /\ I e. V ) /\ f e. ( Base ` ( S Xs_ R ) ) ) -> { x e. I | ( f ` x ) =/= ( ( 0g o. R ) ` x ) } = { x e. I | ( f ` x ) =/= ( 0g ` ( R ` x ) ) } ) |
| 10 | eqid | |- ( S Xs_ R ) = ( S Xs_ R ) |
|
| 11 | eqid | |- ( Base ` ( S Xs_ R ) ) = ( Base ` ( S Xs_ R ) ) |
|
| 12 | reldmprds | |- Rel dom Xs_ |
|
| 13 | 10 11 12 | strov2rcl | |- ( f e. ( Base ` ( S Xs_ R ) ) -> S e. _V ) |
| 14 | 13 | adantl | |- ( ( ( R Fn I /\ I e. V ) /\ f e. ( Base ` ( S Xs_ R ) ) ) -> S e. _V ) |
| 15 | simplr | |- ( ( ( R Fn I /\ I e. V ) /\ f e. ( Base ` ( S Xs_ R ) ) ) -> I e. V ) |
|
| 16 | simpr | |- ( ( ( R Fn I /\ I e. V ) /\ f e. ( Base ` ( S Xs_ R ) ) ) -> f e. ( Base ` ( S Xs_ R ) ) ) |
|
| 17 | 10 11 14 15 5 16 | prdsbasfn | |- ( ( ( R Fn I /\ I e. V ) /\ f e. ( Base ` ( S Xs_ R ) ) ) -> f Fn I ) |
| 18 | fn0g | |- 0g Fn _V |
|
| 19 | dffn2 | |- ( 0g Fn _V <-> 0g : _V --> _V ) |
|
| 20 | 18 19 | mpbi | |- 0g : _V --> _V |
| 21 | dffn2 | |- ( R Fn I <-> R : I --> _V ) |
|
| 22 | 21 | biimpi | |- ( R Fn I -> R : I --> _V ) |
| 23 | fco | |- ( ( 0g : _V --> _V /\ R : I --> _V ) -> ( 0g o. R ) : I --> _V ) |
|
| 24 | 20 22 23 | sylancr | |- ( R Fn I -> ( 0g o. R ) : I --> _V ) |
| 25 | 24 | ffnd | |- ( R Fn I -> ( 0g o. R ) Fn I ) |
| 26 | 5 25 | syl | |- ( ( ( R Fn I /\ I e. V ) /\ f e. ( Base ` ( S Xs_ R ) ) ) -> ( 0g o. R ) Fn I ) |
| 27 | fndmdif | |- ( ( f Fn I /\ ( 0g o. R ) Fn I ) -> dom ( f \ ( 0g o. R ) ) = { x e. I | ( f ` x ) =/= ( ( 0g o. R ) ` x ) } ) |
|
| 28 | 17 26 27 | syl2anc | |- ( ( ( R Fn I /\ I e. V ) /\ f e. ( Base ` ( S Xs_ R ) ) ) -> dom ( f \ ( 0g o. R ) ) = { x e. I | ( f ` x ) =/= ( ( 0g o. R ) ` x ) } ) |
| 29 | fndm | |- ( R Fn I -> dom R = I ) |
|
| 30 | 29 | rabeqdv | |- ( R Fn I -> { x e. dom R | ( f ` x ) =/= ( 0g ` ( R ` x ) ) } = { x e. I | ( f ` x ) =/= ( 0g ` ( R ` x ) ) } ) |
| 31 | 5 30 | syl | |- ( ( ( R Fn I /\ I e. V ) /\ f e. ( Base ` ( S Xs_ R ) ) ) -> { x e. dom R | ( f ` x ) =/= ( 0g ` ( R ` x ) ) } = { x e. I | ( f ` x ) =/= ( 0g ` ( R ` x ) ) } ) |
| 32 | 9 28 31 | 3eqtr4d | |- ( ( ( R Fn I /\ I e. V ) /\ f e. ( Base ` ( S Xs_ R ) ) ) -> dom ( f \ ( 0g o. R ) ) = { x e. dom R | ( f ` x ) =/= ( 0g ` ( R ` x ) ) } ) |
| 33 | 32 | eleq1d | |- ( ( ( R Fn I /\ I e. V ) /\ f e. ( Base ` ( S Xs_ R ) ) ) -> ( dom ( f \ ( 0g o. R ) ) e. Fin <-> { x e. dom R | ( f ` x ) =/= ( 0g ` ( R ` x ) ) } e. Fin ) ) |
| 34 | 33 | rabbidva | |- ( ( R Fn I /\ I e. V ) -> { f e. ( Base ` ( S Xs_ R ) ) | dom ( f \ ( 0g o. R ) ) e. Fin } = { f e. ( Base ` ( S Xs_ R ) ) | { x e. dom R | ( f ` x ) =/= ( 0g ` ( R ` x ) ) } e. Fin } ) |
| 35 | 4 34 | eqtrid | |- ( ( R Fn I /\ I e. V ) -> { f e. ( Base ` P ) | dom ( f \ ( 0g o. R ) ) e. Fin } = { f e. ( Base ` ( S Xs_ R ) ) | { x e. dom R | ( f ` x ) =/= ( 0g ` ( R ` x ) ) } e. Fin } ) |
| 36 | fnex | |- ( ( R Fn I /\ I e. V ) -> R e. _V ) |
|
| 37 | eqid | |- { f e. ( Base ` ( S Xs_ R ) ) | { x e. dom R | ( f ` x ) =/= ( 0g ` ( R ` x ) ) } e. Fin } = { f e. ( Base ` ( S Xs_ R ) ) | { x e. dom R | ( f ` x ) =/= ( 0g ` ( R ` x ) ) } e. Fin } |
|
| 38 | 37 | dsmmbase | |- ( R e. _V -> { f e. ( Base ` ( S Xs_ R ) ) | { x e. dom R | ( f ` x ) =/= ( 0g ` ( R ` x ) ) } e. Fin } = ( Base ` ( S (+)m R ) ) ) |
| 39 | 36 38 | syl | |- ( ( R Fn I /\ I e. V ) -> { f e. ( Base ` ( S Xs_ R ) ) | { x e. dom R | ( f ` x ) =/= ( 0g ` ( R ` x ) ) } e. Fin } = ( Base ` ( S (+)m R ) ) ) |
| 40 | 35 39 | eqtrd | |- ( ( R Fn I /\ I e. V ) -> { f e. ( Base ` P ) | dom ( f \ ( 0g o. R ) ) e. Fin } = ( Base ` ( S (+)m R ) ) ) |
| 41 | 2 40 | eqtrid | |- ( ( R Fn I /\ I e. V ) -> B = ( Base ` ( S (+)m R ) ) ) |