This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Properties showing that an element I is the identity element of a division ring. (Contributed by Mario Carneiro, 11-Oct-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | drngid2.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| drngid2.t | ⊢ · = ( .r ‘ 𝑅 ) | ||
| drngid2.o | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| drngid2.u | ⊢ 1 = ( 1r ‘ 𝑅 ) | ||
| Assertion | drngid2 | ⊢ ( 𝑅 ∈ DivRing → ( ( 𝐼 ∈ 𝐵 ∧ 𝐼 ≠ 0 ∧ ( 𝐼 · 𝐼 ) = 𝐼 ) ↔ 1 = 𝐼 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | drngid2.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | drngid2.t | ⊢ · = ( .r ‘ 𝑅 ) | |
| 3 | drngid2.o | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 4 | drngid2.u | ⊢ 1 = ( 1r ‘ 𝑅 ) | |
| 5 | df-3an | ⊢ ( ( 𝐼 ∈ 𝐵 ∧ 𝐼 ≠ 0 ∧ ( 𝐼 · 𝐼 ) = 𝐼 ) ↔ ( ( 𝐼 ∈ 𝐵 ∧ 𝐼 ≠ 0 ) ∧ ( 𝐼 · 𝐼 ) = 𝐼 ) ) | |
| 6 | eldifsn | ⊢ ( 𝐼 ∈ ( 𝐵 ∖ { 0 } ) ↔ ( 𝐼 ∈ 𝐵 ∧ 𝐼 ≠ 0 ) ) | |
| 7 | 6 | anbi1i | ⊢ ( ( 𝐼 ∈ ( 𝐵 ∖ { 0 } ) ∧ ( 𝐼 · 𝐼 ) = 𝐼 ) ↔ ( ( 𝐼 ∈ 𝐵 ∧ 𝐼 ≠ 0 ) ∧ ( 𝐼 · 𝐼 ) = 𝐼 ) ) |
| 8 | 5 7 | bitr4i | ⊢ ( ( 𝐼 ∈ 𝐵 ∧ 𝐼 ≠ 0 ∧ ( 𝐼 · 𝐼 ) = 𝐼 ) ↔ ( 𝐼 ∈ ( 𝐵 ∖ { 0 } ) ∧ ( 𝐼 · 𝐼 ) = 𝐼 ) ) |
| 9 | eqid | ⊢ ( ( mulGrp ‘ 𝑅 ) ↾s ( 𝐵 ∖ { 0 } ) ) = ( ( mulGrp ‘ 𝑅 ) ↾s ( 𝐵 ∖ { 0 } ) ) | |
| 10 | 1 3 9 | drngmgp | ⊢ ( 𝑅 ∈ DivRing → ( ( mulGrp ‘ 𝑅 ) ↾s ( 𝐵 ∖ { 0 } ) ) ∈ Grp ) |
| 11 | difss | ⊢ ( 𝐵 ∖ { 0 } ) ⊆ 𝐵 | |
| 12 | eqid | ⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) | |
| 13 | 12 1 | mgpbas | ⊢ 𝐵 = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) |
| 14 | 9 13 | ressbas2 | ⊢ ( ( 𝐵 ∖ { 0 } ) ⊆ 𝐵 → ( 𝐵 ∖ { 0 } ) = ( Base ‘ ( ( mulGrp ‘ 𝑅 ) ↾s ( 𝐵 ∖ { 0 } ) ) ) ) |
| 15 | 11 14 | ax-mp | ⊢ ( 𝐵 ∖ { 0 } ) = ( Base ‘ ( ( mulGrp ‘ 𝑅 ) ↾s ( 𝐵 ∖ { 0 } ) ) ) |
| 16 | 1 | fvexi | ⊢ 𝐵 ∈ V |
| 17 | difexg | ⊢ ( 𝐵 ∈ V → ( 𝐵 ∖ { 0 } ) ∈ V ) | |
| 18 | 12 2 | mgpplusg | ⊢ · = ( +g ‘ ( mulGrp ‘ 𝑅 ) ) |
| 19 | 9 18 | ressplusg | ⊢ ( ( 𝐵 ∖ { 0 } ) ∈ V → · = ( +g ‘ ( ( mulGrp ‘ 𝑅 ) ↾s ( 𝐵 ∖ { 0 } ) ) ) ) |
| 20 | 16 17 19 | mp2b | ⊢ · = ( +g ‘ ( ( mulGrp ‘ 𝑅 ) ↾s ( 𝐵 ∖ { 0 } ) ) ) |
| 21 | eqid | ⊢ ( 0g ‘ ( ( mulGrp ‘ 𝑅 ) ↾s ( 𝐵 ∖ { 0 } ) ) ) = ( 0g ‘ ( ( mulGrp ‘ 𝑅 ) ↾s ( 𝐵 ∖ { 0 } ) ) ) | |
| 22 | 15 20 21 | isgrpid2 | ⊢ ( ( ( mulGrp ‘ 𝑅 ) ↾s ( 𝐵 ∖ { 0 } ) ) ∈ Grp → ( ( 𝐼 ∈ ( 𝐵 ∖ { 0 } ) ∧ ( 𝐼 · 𝐼 ) = 𝐼 ) ↔ ( 0g ‘ ( ( mulGrp ‘ 𝑅 ) ↾s ( 𝐵 ∖ { 0 } ) ) ) = 𝐼 ) ) |
| 23 | 10 22 | syl | ⊢ ( 𝑅 ∈ DivRing → ( ( 𝐼 ∈ ( 𝐵 ∖ { 0 } ) ∧ ( 𝐼 · 𝐼 ) = 𝐼 ) ↔ ( 0g ‘ ( ( mulGrp ‘ 𝑅 ) ↾s ( 𝐵 ∖ { 0 } ) ) ) = 𝐼 ) ) |
| 24 | 8 23 | bitrid | ⊢ ( 𝑅 ∈ DivRing → ( ( 𝐼 ∈ 𝐵 ∧ 𝐼 ≠ 0 ∧ ( 𝐼 · 𝐼 ) = 𝐼 ) ↔ ( 0g ‘ ( ( mulGrp ‘ 𝑅 ) ↾s ( 𝐵 ∖ { 0 } ) ) ) = 𝐼 ) ) |
| 25 | 1 3 4 9 | drngid | ⊢ ( 𝑅 ∈ DivRing → 1 = ( 0g ‘ ( ( mulGrp ‘ 𝑅 ) ↾s ( 𝐵 ∖ { 0 } ) ) ) ) |
| 26 | 25 | eqeq1d | ⊢ ( 𝑅 ∈ DivRing → ( 1 = 𝐼 ↔ ( 0g ‘ ( ( mulGrp ‘ 𝑅 ) ↾s ( 𝐵 ∖ { 0 } ) ) ) = 𝐼 ) ) |
| 27 | 24 26 | bitr4d | ⊢ ( 𝑅 ∈ DivRing → ( ( 𝐼 ∈ 𝐵 ∧ 𝐼 ≠ 0 ∧ ( 𝐼 · 𝐼 ) = 𝐼 ) ↔ 1 = 𝐼 ) ) |