This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Properties showing that an element I is the identity element of a division ring. (Contributed by Mario Carneiro, 11-Oct-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | drngid2.b | |- B = ( Base ` R ) |
|
| drngid2.t | |- .x. = ( .r ` R ) |
||
| drngid2.o | |- .0. = ( 0g ` R ) |
||
| drngid2.u | |- .1. = ( 1r ` R ) |
||
| Assertion | drngid2 | |- ( R e. DivRing -> ( ( I e. B /\ I =/= .0. /\ ( I .x. I ) = I ) <-> .1. = I ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | drngid2.b | |- B = ( Base ` R ) |
|
| 2 | drngid2.t | |- .x. = ( .r ` R ) |
|
| 3 | drngid2.o | |- .0. = ( 0g ` R ) |
|
| 4 | drngid2.u | |- .1. = ( 1r ` R ) |
|
| 5 | df-3an | |- ( ( I e. B /\ I =/= .0. /\ ( I .x. I ) = I ) <-> ( ( I e. B /\ I =/= .0. ) /\ ( I .x. I ) = I ) ) |
|
| 6 | eldifsn | |- ( I e. ( B \ { .0. } ) <-> ( I e. B /\ I =/= .0. ) ) |
|
| 7 | 6 | anbi1i | |- ( ( I e. ( B \ { .0. } ) /\ ( I .x. I ) = I ) <-> ( ( I e. B /\ I =/= .0. ) /\ ( I .x. I ) = I ) ) |
| 8 | 5 7 | bitr4i | |- ( ( I e. B /\ I =/= .0. /\ ( I .x. I ) = I ) <-> ( I e. ( B \ { .0. } ) /\ ( I .x. I ) = I ) ) |
| 9 | eqid | |- ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) = ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) |
|
| 10 | 1 3 9 | drngmgp | |- ( R e. DivRing -> ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) e. Grp ) |
| 11 | difss | |- ( B \ { .0. } ) C_ B |
|
| 12 | eqid | |- ( mulGrp ` R ) = ( mulGrp ` R ) |
|
| 13 | 12 1 | mgpbas | |- B = ( Base ` ( mulGrp ` R ) ) |
| 14 | 9 13 | ressbas2 | |- ( ( B \ { .0. } ) C_ B -> ( B \ { .0. } ) = ( Base ` ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) ) ) |
| 15 | 11 14 | ax-mp | |- ( B \ { .0. } ) = ( Base ` ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) ) |
| 16 | 1 | fvexi | |- B e. _V |
| 17 | difexg | |- ( B e. _V -> ( B \ { .0. } ) e. _V ) |
|
| 18 | 12 2 | mgpplusg | |- .x. = ( +g ` ( mulGrp ` R ) ) |
| 19 | 9 18 | ressplusg | |- ( ( B \ { .0. } ) e. _V -> .x. = ( +g ` ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) ) ) |
| 20 | 16 17 19 | mp2b | |- .x. = ( +g ` ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) ) |
| 21 | eqid | |- ( 0g ` ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) ) = ( 0g ` ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) ) |
|
| 22 | 15 20 21 | isgrpid2 | |- ( ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) e. Grp -> ( ( I e. ( B \ { .0. } ) /\ ( I .x. I ) = I ) <-> ( 0g ` ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) ) = I ) ) |
| 23 | 10 22 | syl | |- ( R e. DivRing -> ( ( I e. ( B \ { .0. } ) /\ ( I .x. I ) = I ) <-> ( 0g ` ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) ) = I ) ) |
| 24 | 8 23 | bitrid | |- ( R e. DivRing -> ( ( I e. B /\ I =/= .0. /\ ( I .x. I ) = I ) <-> ( 0g ` ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) ) = I ) ) |
| 25 | 1 3 4 9 | drngid | |- ( R e. DivRing -> .1. = ( 0g ` ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) ) ) |
| 26 | 25 | eqeq1d | |- ( R e. DivRing -> ( .1. = I <-> ( 0g ` ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) ) = I ) ) |
| 27 | 24 26 | bitr4d | |- ( R e. DivRing -> ( ( I e. B /\ I =/= .0. /\ ( I .x. I ) = I ) <-> .1. = I ) ) |